
INTRODUCTION

Aminoglycoside-producing strains utilize ribosomal 
modification as a means of self-defense, regardless of 
whether they also employ drug-modifying enzymes. 
Some of the genes cloned from actinomycetes that 
produce aminoglycoside antibiotics include the grm 
gene from Micromonospora purpurea (Ke l e m e n  et 
al., 1991; Va s i l j e v i c  and Cu n d l i f f e ,  1990), sgm 
from Micromonospora zionensis (Ko j i c  et al., 1992) 
and two genes (kamB and kgmB) from Streptomyces 
tenebrarius (Ho l m e s  and C u n d l i f f e ,  1991; 
S k e g g s  et al., 1987). In each case, resistance is due 
to methylation of ribosomal RNA at a single site 
characteristic of a given phenotype, i.e. resistance 
to a particular group of aminoglycoside antibiot-
ics. For example, the KgmB enzyme methylates 
residue G-1405 in 16S rRNA using S-adenosyl-
methionine (SAM) as a co-factor (B e au c l e r k  and 
Cu n d l i f f e , 1987). It was recently shown in in vitro 
methylation assays that Sgm and KgmB methylases 
act at the same residue, that is at G1405 within 16S 
rRNA (manuscript in preparation).

Both sgm and kgmB appear to be down-regulated 
at the posttranscriptional level by a mechanism of 
translational autoregulation (Ko j i c  et al., 1996; 
Vaj i c  et al., 2004). According to the model pro-
posed, expression of the resistance genes ensures 
that enough methylase molecules modify 16S rRNA 
(the primary target), and when all ribosomes are 
protected unnecessary translation is prevented by 
binding to their own mRNA (the secondary target). 
A CCGCCC hexanucleotide has been identified 14 
nucleotides upstream of the ribosome binding site of 
the sgm, and the same hexanucleotide is also pres-
ent in the A site of 16S rRNA, i.e., the region where 
most of the aminoglycoside resistance methylases 
act (Fo u r my  et al., 1996, Vi c e n s  and We s t h of , 
2003). Moreover, Sgm methylase can down-regulate 
kgmB::lacZ fusions, presumably by binding to a 
CGCCC motif present in the 5’ UTR region of kgmB 
(Vaj i c  et al., 2004). 

In the course of elucidating the Sgm’s transla-
tional autoregulation by employing the E. coli lacZ 
gene and operon fusion systems, it has been noticed 
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that overexpression of the secondary target, i.e., 
the sgm mRNA, could alter the resistance of E. coli 
to gentamicin. The aim of the present work was 
to confirm this observation. Accordingly, further 
experiments were designed to test this possibility, 
both in a heterologous host such as E. coli and in a 
homologous host, M. melanosporea.

MATERIALS AND METHODS

Strains, growth conditions, and plasmids used in this 
study

E. coli strain NM522, Micromonospora melano-
sporea DSM43126 and Streptomyces lividans TK21 
were used. Growth media were prepared as described 
in S a m bro o k  et al. (1989) and Ho pw o o d  et 
al. (1985). In short, the E. coli strain was grown in 
LB (Luria-Bertani) medium. The Micromonospora 

Table 1. Plasmids used in this study.

strain was grown on mM plates, and trypticase 
soy broth (TSB) supplemented with manitol (3% 
final concentration) was used for growth in liquid 
medium. The Streptomyces lividans strain was grown 
on NE plates and YEME liquid medium. R2YE 
supplemented with MRS liquid medium was used 
for regeneration of Micromonospora protoplasts. 
Ampicilin at concentrations of 50 μg/ml and 30 
µg/ml gentamicin were used for selection of trans-
formants in E. coli. In Micromonospora, plasmids 
were selected at 30 μg/ml gentamicin and 40 μg/ml 
nosiheptide. Isopropyl-β-D-thiogalactopyranoside 
(IPTG) was used for transcriptional induction, its 
concentrations being as cited in the text. All plasmids 
used in this work, with relevant characteristics and 
details of their constructions, are listed in Table 1.

Transformation procedures and recombinant DNA 
techniques

Restriction endonuclease digestions, ligations 
and transformation of E. coli strains were performed 

Plasmid Genes and characteristics of interest Source or reference

pUC19 Ampr, high copy number plasmid Yanisch-Perron et al., 1985

pUF1 Ampr,  pUC19, sgm-lacZ fusion preceded by the regulatory sequence under control of  
inducible PPLtl promoter. promoter. Kojic et al., 1996

pFΔR Ampr,  pUC19, plasmid carries  sgm-lacZ fusion without the regulatory sequence under 
control of PPLtl . . This study

pULL Ampr, pUC19, PvuI- EcoRI α-fragment of  β-galactosidase under control of PPLtl . . This study

pUF6KS2 Ampr, Gmr, pUC19, sgm-lacZ fusion preceded by the regulatory sequence under control 
of the inducible PPLtl and  and sgm gene under control of constitutive Pkan. This study

pUF∆RKS2 Ampr, Gmr, pUC19, plasmid carries  sgm-lacZ fusion without the regulatory sequence 
under control of PPLtl. and. and sgm gene under control of constitutive Pkan . This study

pMZ1 Cryptic plasmid from Micromonospora zionensis Oshida et al., 1986

pBMZ13 Gmr, pMZ1, sgm gene under control of its own promoters. Vukov and Vasiljevic, 1998

pMRSP1 Nhr, pIJ486, N-terminal region of sgm under control of P1 promoter from pMZ1 This study

pMRSP29 Nhr, pIJ486, N-terminal region of sgm under control of P29 promoter from pMZ1. This study
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according to standard protocols (S a m bro o k  et al., 
1989; Ho pw o o d  et al., 1985). The Micromonospora 
melanosporea strain was transformed using trans-
formation procedures described previously (Ko j i c 
et al., 1991).

Determination of minimal inhibitory concentrations 
(MIC)

Equal masses of micelial fragments were resus-
pended in 1 ml of TSB medium. 100 µl from each 
suspension was streaked on mM medium plates 
containing different concentrations of antibiotics. 
Lists of antibiotics and concentrations used are 
given in Table 2. Cell growth in liquid media was 
monitored by reading OD at 550 nm. 

RESULTS

Overexpression of 3’-truncated sgm mRNA lowers re-
sistance to gentamicin conferred by Sgm in E. coli

To determine whether overexpression of Sgm’s 
secondary target might effect Sgm-conferred gen-
tamicin resistance in E. coli, three vectors were 
constructed, each harboring sgm under control of 
the Pkan promoter, while the 5’ UTR of sgm was 
expressed from the inducible PPLtl promoter (Fig. promoter (Fig. 
1). pUF6KS2 expresses the sgm-lacZ fusion, which 
contains the regulatory hexanucleotide preceding 
the RBS of sgm, while pUF∆RKS2 is characterized 
by deletion of the hexanucleotide. The pULLKS2 

plasmid was used as a negative control; it contains 
only the α-fragment of β-galactosidase without 5’ 
UTR sequences and the N-terminal region of sgm. 
The growth rate of E. coli NM522 cells containing 
plasmids pUF6KS2, pUF∆RKS2, and pULLKS2 was 
measured under conditions of increasing concentra-
tions of gentamicin and induction of transcription 
from PPLtl with IPTG. Cells were grown in overnight with IPTG. Cells were grown in overnight 
cultures in the presence of 50 μg/ml ampicilin. 
Batches of liquid cultures with increasing concentra-
tions of gentamicin and in the absence or presence 
of 1 mM IPTG were inoculated with 1% of overnight 
cultures and cell growth was monitored after 16 h of 
growth (Fig. 2). It was observed that cells with the 
pUF6KS2 plasmid, which overexpress the sgm sec-
ondary target, show a marked reduction of growth 
rate in the presence of gentamicin. Cells carrying 
pUF∆RKS2, which do not express the sgm second-
ary target, showed the same growth rate in the pres-
ence of gentamicin as observed for the control strain 
with pULLKS2.

Correlation between induction of secondary target 
transcription and sensitivity to gentamicin

Correlation between induction of transcription 
of secondary target (5’ UTR plus) and sensitivity 
to gentamicin in E. coli cells was further tested by 
measuring growth rates of cells with  pUF6KS2, 
pUF∆RKS2, and pULLKS2 throughout the course 
of the experiment. Cells were grown in LB medium 

Gm 5
+Nh20

Gm 10
+Nh20

Gm20
+Nh20

Gm50
+Nh20

Gm100
+Nh20

Gm200
+Nh20

Gm300
+Nh20

Gm400
+Nh20

M. melanosporea
+pBMZ13
+pMRSP1 + + + - - - - -

M. melanosporea
+pBMZ13
+pMRSP29 + + / - - - - - - -

Gm 5 Gm10 Gm20 Gm50 Gm100 Gm200 Gm300 Gm400

M. melanosporea
+ pBMZ13 + + + + + + + +

Table 2. Resistance of Micromonospora melanosporea clones to gentamicin and nosiheptid.
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Fig. 1. Plasmid system for analysis of the influence of Sgm 
secondary target overexpression on E. coli gentamicin resis-
tance. Only relevant plasmid regions for this study are shown. 
Shaded boxes indicate sgm and lacZ gene regions, arrows the 
direction of transcription, triangle the RBS region of sgm, and 
circles the hexanucleotide on the mRNA target.

containing 5 µg/ml of gentamicin and induced with 
0, 0.01 mM, 0.1 mM and 1 mM IPTG. The results 
clearly demonstrate that only overexpression of the 
regulatory sequence (construct pUF6KS2) causes 
dose-dependent reduction in the growth rate (Fig. 
3). Correlation between induction of the secondary 
target and sensitivity to gentamicin was confirmed 
in this way. These results therefore suggest that the 
5’ UTR sequence, when overexpressed along with 
the sgm gene, presumably exerts its negative effect 
on the establishment of Sgm-conferred gentamicin 
resistance in E. coli cells by titrating the Sgm mole-
cules. These observations also raised the question as 
to whether the same is true in the homologous back-
ground. To learn the answer, we next introduced a 

secondary target into Micromonospora melanosporea 
and examined its effect on Sgm-conferred gentami-
cin resistance in this bacterium. 

Influence of sgm secondary target overexpression on 
gentamicin resistance in Micromonospora melano-
sporea

Micromonospora melanosporea does not pro-
duce any antibiotic; it is sensitive to aminoglycosides 
including gentamicin and thus suitable for testing 
the effect of overexpression of the sgm regulatory 
region on mRNA in a homologous background. M. 
melanosporea was transformed with pBMZ13, a low 
copy plasmid that contains sgm under control of its 
own promoter (Vu k ov  and Va s i l j e v i c , 1998).

The sgm secondary target was expressed in trans 
from plasmids expressing this regulatory region 
under the control of two different promoters: either 
P1, which confers resistance to 30 µg/ml kanamycin 
when cloned into pIJ486, the Streptomyces pro-
moter-probe plasmid; or the P29 promoter isolated 
from the pMZ1 plasmid, which confers resistance 
to 400 µg/ml kanamycin when tested in the same 
vector (Ko j i c  et al., 1994). The constructed plas-
mids containing the sgm secondary target under 
control of the P1 and P29 promoters were named 
pMRSP1 and pMRSP29, respectively. Resistance to 
gentamicin was measured in M. melanosporea cells 
cotransformed with either pBMZ13 plus pMRSP1 or 
pBMZ13 plus pMRSP29. As a control, a strain con-

Fig. 2. Growth curve of E. coli NM522 cells transformed with pUF6KS2,  pUFΔRKS2, and pULLKS2 measured under noninduc-
ing conditions (- IPTG) or in the presence of 1 mM IPTG (+ IPTG).
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taining the pBMZ13 plasmid was used. Growth was 
monitored on mM plates with increasing concentra-
tions of gentamicin (Table 2). Nosiheptid was added 
to the media to ensure the presence of pMRSP1 and 
pMRSP29, plasmids that have gene conferring resis-
tance to this antibiotic, as a selective marker. Perhaps 
surprisingly, the results showed that expression of 5’ 
UTR under the weak P1 promoter was sufficient to 
cause a dramatic decrease of gentamicin resistance, 
and that the effect was further potentiated by expres-
sion under the strong P29 promoter, when reduction 
of gentamicin resistance was almost complete. Thus, 
the presence of sgm regulatory sequence expressed 

under the P1 promoter reduces the level of resis-
tance to 20 µg/ml gentamicin, whereas expression 
from the stronger P29 promoter reduces resistance 
even more (5-10 µg/ml). Hence, the results clearly 
indicate that resistance to gentamicin is reduced 
when the secondary target is overexpressed in M. 
melanosporea, as was observed in E. coli. 

DISCUSSION

Our interest in regulation of the sgm gene 
derives from the fact that we were unable to detect 
Sgm protein synthesis in an E. coli minicell system, 

Fig. 3. Growth curve of E. coli NM522 cells transformed with pUF6KS2 and pUFDRKS2 under conditions when transcription from 
PLtl was induced with 0, 0.01 mM, 0.1 mM, and 1 mM IPTG.



M. KOJIĆ ET AL.278

despite the fact that E. coli cells containing the cloned 
gene were gentamicin resistant (Ko j i c  et al., 1992). 
The Sgm protein has a limited number of intracel-
lular target sites, and it is anticipated that relatively 
few enzyme molecules are sufficient for complete 
modification of the target (i.e., 16S rRNA). Sgm, like 
many other components involved in translation, is 
autoregulated at the post-transcriptional level (for 
a review, see Ko z a k , 2005, and references therein). 
Autoregulation of the sgm has been proved in vitro 
using gene and operon sgm-lacZ fusions (Ko j i c  et 
al., 1996). The results presented in this paper show 
a relationship between the expression of sgm mRNA 
(secondary target) and gentamicin resistance in E. 
coli and M. melanosporea strains. It is known that 
the resistance level conferred by RNA-modifying 
methylases is not gene dosage dependent, so a small 
number of molecules is enough to render ribo-
somes resistant to antibiotics. However, the results 
presented in this paper clearly demonstrate that 
an excess of the secondary target can titrate down 
the amount of Sgm methylase and thus reduce the 
number of available molecules necessary to obtain 
a high level of resistance. Experiments with the E. 
coli system show a direct correlation of sensitivity 
to gentamicin with the level of induction of the PPLtl 
promoter by IPTG (Fig. 3). This correlation was 
not so obvious in M. melanosporea cells, where two 
constitutive promoters of different strength were 
used – P1, a relatively weak promoter, and P29, a 
relatively strong one. Despite the fact that expression 
of the secondary target could not be controlled by 
induction of transcription (as it is in E. coli), experi-
ments with the Micromonospora system also show 
that the stronger promoter, i.e., one that results in 
more of the secondary target in the cell, lowers resis-
tance more than the weaker promoter. Moreover, 
the MIC of gentamicin with the P29 promoter 
was diminished almost to the MIC value of the M. 
melanosporea wild-type strain (3 µg/ml, as reported 
in Ko j i c  et al., 1999). Such a strong effect in the 
Micromonospora strain can be attributed to struc-
tural specificity of Micromonospora 16S rRNA. The 
16S rDNA sequences of numerous Micromonospora 
strains have been determined (Ko c h  et al., 1996), 
and it was shown that all key nucleotides in the A 
site are conserved, although one interesting feature 

is discernible in sequences of M. melanosporea and 
M. purpurea. Namely, these two strains have C-1409 
changed to G, so that the stem beginning with the 
1409-1491 base pair is disrupted. The importance 
of this basepair for paromomycin resistance in 
E. coli was demonstrated by mutagenesis of 16S 
rRNA and by chemical probing (D e  S t a s i o  et al., 
1989). However, M. melanosporea and M. purpurea 
are sensitive to paromomycin, like all other tested 
Micromonospora strains (Mat k ov i c  et al., 1984).

The obtained results should also be discussed in 
the light of specific binding of methylase to the 30S 
subunit and its own mRNA. Strong decrease of gen-
tamicin resistance upon overexpression of 5’ UTR in 
E. coli might not be surprising, but the similar effect 
in M. melanosporea was certainly unexpected. In the 
latter case, it would hardly be anticipated that the 
situation is similar to that in E. coli, since it would 
suggest that the binding of methylase is, even in the 
homologous system, stronger to its own mRNA than 
to 30S ribosomal subunits. Unfortunately, specificity 
of binding could not be confirmed in electropho-
retic mobility shift assays with purified Sgm and 
either the mRNA or the 16S rRNA oligonucleotide 
model (I l i c - Tom i c  and Va s i l j e v i c , unpublished 
results), leading to the conclusion that some other 
components of translational machinery are involved 
in recognition of both targets.

In any case, the results presented here raise the 
interesting question as to whether the expression of 
5’ UTR in the producer Micromonospora zionensis 
affects resistance of this organism to gentamicin. If 
so, this would seem to be at odds with the fact that 
16S rRNA is the primary target of Sgm; hence, the 
enzyme should bind to it with much higher affinity 
than to its own mRNA. In M. zionensis, sgm is tran-
scribed from two promoters (Ko j i c  et al., 1992), so 
it is formally possible that M. zionensis regulates the 
establishment of its resistance by changing the avail-
ability of 5’ UTR via activation of the P2 promoter. 
Conceivably, by activating the P2 promoter (located 
350 nt upstream of the start codon), M. zionensis 
might trap the 5’ UTR responsible for autoregula-
tion in a secondary structure of the longer mRNA, 
thereby rendering it less available for Sgm. 
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In summary, the findings presented here clearly 
indicate the need for a more precise understanding 
of the regulatory interplay between Sgm methylase 
and its primary and secondary targets. 
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ОВЕРЕКСПРЕСИЈА 5’ UTR MRNK SGM ГЕНА СМАЊУЈЕ РЕЗИСТЕНЦИЈУ НА ГЕНТАМИЦИН 
У ЋЕЛИЈАМА ESCHERICHIA COLI  И MICROMONOSPORA MELANOSPOREA 

М. КОЈИЋ, М., САНДРА ВОЈНОВИЋ, НАТАША ВУКОВ и БРАНКА ВАСИЉЕВИЋ,

Институт за молекуларну генетику и генетичко инжењерство, 11010 Београд, Србија

16S rRNК метилазе су експримиране у већи-
ни бактерија које производе антибиотике да би 
се заштитиле од дејства антибиотика путем мети-
лације 16S rRNК на позицијама које су битне за 
њихово дејство. Ген sgm који је одговоран за рези-
стенцију на сисомицин и гентамицин у соју Mic-
romonospora zionensis, метилује G1405 у оквиру 
А места 16S rRNA где се налази и CCGCCC хек-
сануклеотид. Исти хексануклеотид се налази и 
14 нуклеотида испред места везивања рибозома 
на sgm информационој RNК. Предложени модел 
транслационе регулације sgm гена претпоставља 

да се Sgm протеин везује за овај мотив како на 
16S rRNК, тако и на 5’ нетранслирајућем регио-
ну (UTR) сопствене информационе RNК. 5’ UTR 
секвенца је оверекспримирана на sgm информа-
ционој RNК са скраћеним 3’ крајем и тестиран 
је ефекат на гентамицинску резистенцију у ћели-
јама E. coli и Micromonospora melanosporea. Ове-
рекспресија ове регулаторне секвенце доводи 
до смањења резистенције у оба тестирана соја 
највероватније због титрације Sgm молекула од 
стране 5’ UTR-а.


