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Abstract - Aging is an extremely complex, multifactorial process that is characterized by a gradual and continuous loss of 
physiological functions and responses, particularly marked in the brain. A common hallmark in aging and age-related 
diseases is an increase in oxidative stress and the failure of antioxidant defense systems. Current knowledge indicates that 
the level of glutathione progressively declines during aging. Because nerve cells are the longest-living cells that exhibit a 
high consumption rate of oxygen throughout an individual’s lifetime, the brain may be especially vulnerable to oxidative 
damage and this vulnerability increases during aging. In addition, the brain contains high concentrations of polyunsatu-
rated fatty acids and transition metals and low antioxidative defense mechanisms. Although aging is an inevitable event, 
a growing volume of data confirms that antioxidant supplementation in combination with symptomatic drug treatments 
reduces oxidative stress and improves cognitive function in aging and age-related diseases. The present review discusses 
the neuroprotective effects of antioxidants in the aging brain. 
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OXIDATIVE STRESS AND AGING

The aging process is associated with a progressive 
decline in multiple aspects of cognitive perform-
ance, including reductions in mental speed, atten-
tion, memory, hearing, vision and stamina, as well 
as decreases in brain structure size and white mat-
ter integrity (Park and Reuter-Lorenz, 2009). Cur-
rent evidence supports the view that aging is a mul-
tifactorial process that leads to loss of function and 
the inability to respond adequately to stress. Nu-
merous aging theories have been proposed; prob-
ably the most important are those that incorporate 
genomic and free radical theories. The “free radical 
theory of aging” has been one of the most studied 
and accepted hypotheses for the molecular basis 
of aging (Harman, 1956). More than 50 years ago, 
Denham Harman defined aging as the progressive 
“... accumulation of diverse deleterious changes in 

cells and tissues with advancing age that increase 
the risk of disease and death”. Later, Harman added 
a slight modification to this theory to bring special 
attention to the role of the mitochondria in the ag-
ing process because these organelles are a major site 
of reactive oxygen species (ROS) generation (Har-
man, 1972). Harman’s original hypothesis has been 
refined in such a way to address the role of many 
different forms of ROS in regulating the aging proc-
ess and is now generally termed the oxidative stress 
theory of aging (Harman, 1998). The basis of this 
theory is that the imbalance between pro-oxidants 
and antioxidants leads to the accumulation of oxi-
dative damage of cellular macromolecules that in-
creases during aging. Age-related accumulation 
of oxidative damage in the brain contributes to a 
progressive loss in the function of cellular processes 
and cognitive deterioration. The oxidative stress the-
ory and its correlate, the mitochondrial theory of 
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aging, are among the most studied and widely ac-
cepted of all hypotheses of the mechanism of the 
aging process. 

A large body of experimental research has in-
dicated that compared to other organs, the brain is 
particularly vulnerable to oxidative damage, due to 
its high metabolic rate, characterized by a highly 
active mitochondria metabolism. In addition, the 
brain is very susceptible to oxidative damage be-
cause of its high concentrations of polyunsaturated 
fatty acids and transition metals that are involved in 
the generation of the hydroxyl radical; moreover, the 
brain contains low activities of antioxidative defense 
mechanisms (Droge, 2003; Jovanovic and Jovanovic, 
2011). Finally, neurons are the longest-living cells 
and oxidative damage of nerve cells tends to be cu-
mulative over time. Consequently, ROS generation 
in the mammalian brain is intense. Oxidative stress 
is caused by an imbalance between the production of 
ROS and the cellular mechanisms responsible for the 
scavenging of ROS. Oxidative damage that occurs 
because of increased levels of ROS can target cellular 
components, consequently leading to altered physi-
ological function of the cells (Sultana and Butterfield, 
2011). Hydrogen peroxide (H2O2), superoxide ani-
ons (O2

•¯), hydroxyl radicals (HO•) and other reac-
tive compounds (singlet oxygen, alcoxyl and peroxyl 
radicals, etc.) derived from oxygen are collectively 
called “reactive oxygen species” (ROS). Once pro-
duced, ROS react with lipids, proteins and nucleic 
acids, causing oxidative damage to these macromol-
ecules in the cells during the organism’s lifespan, 
leading to a progressive decline of cellular functions 
(Evans et al., 2004; Chakravarti and Chakravarti, 
2007). ROS-induced damage in biomolecules in-
creases with aging, especially in the last quarter of 
the lifespan. There is a growing body of evidence 
supporting the strong role of age-related increases in 
protein oxidation as a primary mediator of the cellu-
lar dysfunction observed during normal aging and in 
age-related diseases (Squier, 2001; Sohal et al., 2002). 
Since proteins are the major components of biologi-
cal systems and regulate multiple cellular pathways, 
oxidative damage of key proteins is considered to be 

the principal molecular mechanism leading to loss of 
cellular function in the aging process. 

According to Salmon et al. (2010), if oxidative 
stress plays a role in aging, it is much more limited 
than previously thought. The results from mice with 
genetic manipulations in the antioxidant defense sys-
tem suggest that oxidative stress plays a very limited 
role in aging, but a major role in lifespan. Salmon et 
al. (2010) speculates that the role of oxidative stress 
in aging depends on the environment. In an environ-
ment with minimal stress, oxidative damage plays lit-
tle if any role; however, when an organism is exposed 
to chronic stress over its lifespan, oxidative damage 
plays a major role in the aging process. According 
to Sasaki (2010), production of ROS increases with 
age and this reactive oxygen may be a kind of signal 
for aging, and its levels in tissue may determine the 
aging process and lifespan. Decelerating the age-re-
lated increases of ROS production is expected to be 
a potent strategy for the development of anti-aging 
interventions.

It has long been known that aging is a major risk 
factor for many neurodegenerative diseases, includ-
ing one of the most common forms of age-associated 
neural decline, Alzheimer’s disease. Oxidative stress 
that is normally associated with aging is a prominent 
and early feature of Alzheimer’s disease and plays a 
role in its pathogenesis and progression (Jovanovic, 
2012; Sultana and Butterfield, 2013). 

ANTIOXIDANTS IN THE AGING BRAIN

To maintain cell viability and homeostasis, aerobic 
organisms possess a defense mechanism to cope with 
the increased oxidative stress, or to prevent the onset 
of oxidative stress, through enzymatic scavengers of 
ROS (e.g. superoxide dismutases, catalase and glu-
tathione reductase) or nonenzymatic sources (e.g. 
glutathione, melatonin, vitamins A, C and E and fla-
vonoids). Additional redox-dependent protein repair 
pathways prevent the accumulation of misfolded or 
damaged proteins and protect the cell against poten-
tially toxic proteins.
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Enzymatic antioxidants are considered to be the 
first line of cellular defense against oxidative damage. 
The second line of defense against ROS is provided 
by non-enzymatic antioxidants.

When ROS production exceeds antioxidant pro-
tection, the resulting oxidative stress leads to mac-
romolecular damage. The brain is poor in catalytic 
activity and has low levels of protective antioxidant 
enzymes, catalase and glutathione peroxidase. The 
glutathione system consists of reduced (GSH) and 
oxidized (GSSG) forms of glutathione. A large body 
of experimental evidence demonstrates that GSH 
can protect neurons against ROS, chiefly acting as 
an antioxidant and a redox regulator (Dringen and 
Hirrlinger, 2003; Shish et al., 2003). GSH is a tripep-
tide consisting of the amino acids glutamate, cysteine 
and glycine. GSH is essential for the detoxification 
of ROS in nerve cells. However, the concentration of 
glutathione is relatively lower in the brain compared 
to other organs of the body (Skaper et al., 1999). The 
results of Jovanovic and Jovanovic (2013a, b) suggest 
that the neurotoxic effect of cumene hydroperox-
ide in leech Retzius nerve cells was reduced in the 
presence of GSH applied in a concentration of 0.2 
mM. The protective effects of GSH against cumene 
hydroperoxide-induced neurotoxicity may be due, 
at least in part, to its ability to scavenge ROS and to 
protect sulfhydryl groups on the ion transport pro-
teins.

Several independent studies have suggested that 
the concentration of GSH progressively declines dur-
ing aging and in some age-related diseases, such as 
neurodegenerative diseases (Dringen and Hirrlin-
ger, 2003; Maher et al., 2005). Glutathione depletion 
in the brain has been connected with the oxidative 
stress occurring in aging. Sastre et al. (2005) found 
that cellular glutathione is slightly (by approximately 
30%) decreased with aging. 

ANTIOXIDANT DEFENSE OF THE BRAIN: A 
ROLE FOR ASTROCYTES

A growing body of data demonstrates that glial cells 
have a stronger antioxidant potential in compari-

son to neurons and that they can provide protection 
to neurons from oxidative damage. Microglial cells 
contain high amounts of GSH and show substantial 
activities of catalase, superoxide dismutase and glu-
tathione peroxidase. The direct measurement of in-
tracellular concentrations of brain glutathione has 
shown that GSH is somewhat more concentrated 
in the glia than in neurons. Rice and Russo-Menna 
(1998) demonstrated that glutathione is distinctly 
compartmentalized between neurons and glia, with 
an average intracellular concentration of 2.5 mM in 
neurons and 4 mM in glial cells. Astrocytes protect 
neurons from oxidative stress in several ways. Ac-
cording to Gupta et al. (2012), astrocytes can protect 
neurons against ROS, either through glutathione-
dependent or glutathione-independent pathways. 
One route is via activation of the nuclear factor 
(erythroid-derived 2)-like 2 (Nrf2)-antioxidant re-
sponsive element (ARE) pathway. Nrf2 is referred 
to as the “master regulator” of the antioxidant re-
sponse, modulating the expression of antioxidant 
enzymes; an increased level of GSH may be a ma-
jor component of the neuroprotection mediated by 
Nrf2. Activation of this pathway protects cells from 
oxidative damage and cell death (Hur and Gray, 
2011). Neurons are more susceptible than glia to 
oxidative damage. Neuronal viability is enhanced 
significantly by an increased supply of GSH precur-
sors from Nrf2-overexpressing glia. Accumulating 
data suggests that astrocytes protect neurons from 
oxidative damage, in part, via maintaining suf-
ficient neuronal glutathione levels. According to 
Stepkowski and Kruszewski (2011), the Nrf2/ARE 
signaling pathway is the main pathway responsible 
for cell defense against oxidative stress and in cel-
lular redox regulation.

Additionally, cells have different protein repair 
pathways to rescue and repair oxidized and non-
functional proteins and restore their functions. Re-
cent studies have found that the ubiquitin-proteas-
ome pathway plays a pivotal role in the recognition 
and degradation of oxidized proteins and thus limits 
oxidative damage in aging. The major function of the 
ubiquitin-proteasome pathway is to prevent the ac-
cumulation of misfolded or damaged proteins and 
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to protect the cell against potentially toxic proteins 
(Lecker et al., 2006). 

ANTIOXIDANT SUPPLEMENTATION IN THE 
AGING BRAIN

Oxidative damage plays a role in limiting the 
lifespan of invertebrates. In the mammalian mod-
el, the effect of oxidative stress on lifespan is less 
clear. The expression of antioxidant enzymes has 
affected lifespan in a wide range of experimental 
animal models. However, the direct effect of anti-
oxidant enzyme treatment on lifespan is less clearly 
defined in mammalian systems. Investigators have 
tried to determine whether dietary antioxidants can 
ameliorate ROS-mediated damage or slow the rate 
of aging. Current knowledge indicates that chronic 
intake dietary antioxidants, by preventing oxidative 
stress, may produce beneficial effects against mul-
tiple age-related deficits of the brain. A variety of 
antioxidants has been examined for a reduction of 
oxidative damage. These range from natural prod-
ucts with antioxidant properties such as melatonin, 
resveratrol, vitamin C, vitamin E, lipoic acid, coen-
zyme Q, green tea, Ginkgo biloba extract, L-carnos-
ine and “thiol-delivering” glutathione-mimics (such 
as tricyclodecan-9-yl-xanthogenate).

Current evidence supports a contribution of 
polyphenols to the prevention of oxidative damage, 
but their mechanisms of action are not fully under-
stood. One important cellular pathway affected by 
polyphenols is the activation of the transcription 
factor Nrf2 via the ARE, which mediates genera-
tion of phase 2 detoxifying enzymes (Erlank et al., 
2011). According to Steele and Robinson (2012), 
drugs that stimulate Nrf2-mediated gene expression 
can increase the GSH level of nerve cells in vitro and 
in vivo. Such drugs include tert-Butylhydroquinone, 
sulforaphane, resveratrol and lipoic acid (Suh et al., 
2004; Farr et al., 2012). Moskaug et al. (2005) found 
that dietary polyphenols such as flavonoids, increase 
expression of γ-glutamylcysteine synthetase, the en-
zyme which is rate limiting in the synthesis of the 
glutathione. Joseph et al. (2005) speculate that the 
combinations of antioxidant and anti-inflammatory 

fruit polyphenolic compounds may show efficacy 
in aging. According to Lebel et al. (2012), vegetal 
polyphenolic compounds might decrease the en-
hanced vulnerability to oxidative damage that occurs 
in the aging brain.

Resveratrol is a polyphenolic compound found 
in red wine, grapes, peanuts and some berries, 
which is reported to extend the lifespan in some 
(Valenzano and Cellerino, 2006; Wood et al., 2004), 
but not all studies in animals (Bass et al., 2007; Kae-
berlein et al., 2005). Mokni et al. (2007) found that 
in the brains of healthy rats, resveratrol increases 
the activity of antioxidants such as superoxide dis-
mutase and catalase, and decreases the level of oxi-
dative stress. Liu et al. (2012) investigated whether 
resveratrol can reduce oxidative damage and reverse 
the cognitive deficit in senescence-accelerated mice 
after an 8-week treatment with resveratrol. It was 
found that resveratrol significantly improved learn-
ing and memory ability and increased the activities 
of antioxidant enzymes with a reduction in the con-
tent of malondialdehyde. According to Long et al. 
(2009), resveratrol is one of the active ingredients 
in grape extract that extends lifespan, protects mi-
tochondria from oxidative damage and improves 
motor function in a drosophila model of Parkin-
son’s disease. Accumulating data suggests that oral 
supplementation with GSH can mediate age-related 
changes in synaptic plasticity (Robillard et al., 2011; 
Mizuno et al., 2011). 

Isothiocyanates are a group of naturally occurring 
compounds present in plants and cruciferous vegeta-
bles such as broccoli, Brussels sprouts, cabbage, kale, 
cauliflower, horseradish, radish and turnip. Based on 
recent animal and human studies, consumption of 
cruciferous vegetables may inhibit the development 
of tumors and slow the aging process (Conaway et 
al., 2002; Zanichelli et al., 2012). Grunwald et al. 
(2013) demonstrated that lyophilized broccoli, add-
ed to flour as a dietary source, significantly increases 
the longevity of the red flour beetle (Tribolium cas-
taneum), and that its effect is mediated through sig-
naling pathways involving Nrf-2, Jnk-1 and Foxo-1. 
According to Cheng et al. (2013), curcumin restores 
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age-related loss of synapse and produces an elevated 
level of glutathione in the hippocampus. As oxidative 
stress is implicated in the etiology of many neuro-
degenerative disorders, isothiocyanates may be a po-
tential tool for the prevention and treatment of such 
diseases. Sulforaphane and 6-(methylsulfinyl)hexyl 
isothiocyanate (6-HITC) are naturally occurring iso-
thiocyanates. Mizuno et al. (2013) demonstrated that 
pretreatment with sulforaphane and 6-HITC pro-
vided protection against the cytotoxicity induced by 
oxidative stress in rat striatal cultures and increased 
the intracellular glutathione content through the 
Nrf2-ARE pathway.

Vitamin C (ascorbic acid), a water-soluble vita-
min, is a naturally occurring antioxidant and free 
radical scavenger. The literature implicating vita-
min C in the reduction of oxidative damage and the 
promotion of cognitive function remains contro-
versial. Many reports have documented the protec-
tive actions of vitamin C in various models of oxi-
dative stress due to its high efficacy as a free radical 
scavenger and indirect antioxidant. According to 
Meister (1994), supplementation of ascorbic acid in 
glutathione-deficient mice and rats increases tissue 
and mitochondrial levels of glutathione. Treatments 
of mice with ascorbic acid significantly reduce the 
age-related increase in protein carbonyl level in 
the cerebral hemispheres in comparison with age-
matched control mice, indicating that ascorbic 
acid ameliorates the age-related increase in pro-
tein carbonyl content (Dkhar and Sharma, 2011). 
In contrast, Tveden-Nyborg et al. (2012) found that 
a long-term poor vitamin C status does not acceler-
ate oxidative stress in aging brains of guinea pigs. 
They compared the markers of oxidative stress (li-
pid oxidation, decreased glutathione, increased p53 
mRNA expression and somewhat elevated DNA 
oxidation) of aging to that of vitamin C deficiency 
during a 6-month dietary intervention, by assessing 
vitamin C transport and redox homeostasis in the 
brain. 

Asha Devi et al. (2012) examined the protec-
tive role of vitamins E and C in combating oxidative 
stress caused by intermittent cold exposure in aging 

rats’ frontoparietal cortex. Supplementation with 
vitamins E (a daily dose of 50 I.U./kg body weight) 
and C (400 mg/kg body weight) together can protect 
against oxidative damage, particularly in middle-
aged (18 months) and old (24 months) male Wis-
tar rats. Dietary supplementation with high doses 
of vitamin E (5.0 g alpha-tocopherol acetate/kg of 
food from 28 weeks) extended the median lifespan 
by 40%, improved neurological functions by 25-28% 
and improved brain mitochondrial function in aging 
mice (Navarro and Boveris, 2010). Vitamin E crosses 
the blood-brain barrier, and chronic supplementa-
tion with vitamin E increases α-tocopherol levels 
2.5-times in the mouse brain.

Melatonin, the pineal secretory product, is a po-
tent free radical scavenger and an indirect antioxi-
dant. Although many theories relating melatonin 
to aging have been proposed, the role of this pineal 
hormone in the aging process is still unclear. Me-
latonin is a multifunctioning molecule that may be 
neuroprotective. According to Reiter et al. (1996), 
melatonin is more effective than glutathione in neu-
tralizing the highly toxic hydroxyl radical and is also 
superior to vitamin E as a peroxyl radical (LOO•) 
scavenger. In contrast to classical antioxidants, mela-
tonin, because of its high lipophilicity, can cross the 
blood-brain barrier and has a widespread intracellu-
lar distribution. Melatonin stimulates several antiox-
idative enzymes (Fischer et al., 2013) and improves 
mitochondrial function and cellular bioenergetics. 
The results of Limon-Pacheco and Gonsebatt (2010) 
suggest that melatonin increases the expression and 
activities of the GSH-related enzymes and increases 
the levels of GSH. In addition, melatonin plays an 
important role in protecting neuronal cells from 
amyloid β-mediated oxidative damage and increas-
es cell survival. Several animal and clinical studies 
have indicated that melatonin levels are decreased 
in aging and neurodegenerative diseases (Harde-
land, 2012; Petrosillo et al., 2013; Pandi-Perumal et 
al., 2013). Additionally, melatonin exhibits immu-
nomodulatory properties and a remodeling of the 
age-associated decline in immune function, known 
as immunosenescence (Espino et al., 2012). Future 
research should focus on molecular pathways that 
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contribute to senescence (especially among longer-
lived species) and on potential targets for treatments 
of age-associated diseases. 

CONCLUSION

Although the fundamental mechanisms in the 
pathogenesis of aging are still poorly understood, a 
growing body of evidence points to oxidative stress 
as to one of the primary determinants of the aging 
process. Glutathione depletion in the brain has been 
connected with the oxidative stress occurring in ag-
ing and age-related diseases. There is evidence that 
antioxidant treatment protects against age-related 
dysfunction, including cognitive decline. Dietary 
supplementation with fruit or vegetable extracts high 
in antioxidants might decrease the enhanced vulner-
ability to oxidative stress that occurs in aging and 
could have significant anti-aging effects. Future re-
search will provide more insight into potential thera-
peutic targets and approaches for modulating aging, 
age-related diseases, and longevity.
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