In vitro assessment of the nematicidal potential of Streptomyces violascens strain AS2 against root-knot nematodes (Meloidogyne sp.)

Authors

  • Latifa Azlay 1. Laboratory of Microbial Biotechnology, Agrosciences and, Environment, CNRST Labeled Research Unit N◦4, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; 2. Laboratory of Biotechnologies and Valorization of Natural Resources, Department of Biology, Faculty of Sciences Agadir, Ibn Zohr University, Agadir, Morocco
  • Ez-Zahra Oubassou 1. Laboratory of Microbial Biotechnology, Agrosciences and, Environment, CNRST Labeled Research Unit N◦4, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; 2. Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
  • Alexandre Berr Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084 Strasbourg, France
  • El Hassan Mayad Laboratory of Biotechnologies and Valorization of Natural Resources, Department of Biology, Faculty of Sciences Agadir, Ibn Zohr University, Agadir, Morocco
  • Mustapha Barakate 1. Laboratory of Microbial Biotechnology, Agrosciences and, Environment, CNRST Labeled Research Unit N◦4, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; 2. Biodiversity and Plant Sciences Program, AgroBioScience Department, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University (UM6P), 43150 Benguerir, Morocco

DOI:

https://doi.org/10.2298/ABS240711026A

Keywords:

Actinomycetota, Meloidogyne sp., nematocidal activity, egg hatch inhibition, second-stage juvenile mortality

Abstract

Paper description:

  • Chemical nematicides are used in plant parasitic nematode management. Due to their harmful impact on the environment, sustainable solutions are needed.
  • Research focused on Actinobacteria which have diverse mechanisms of action. We studied the in vitro effects of Streptomyces violascens extracts on eggs and second-stage juveniles of Meloidogyne
  • Streptomyces violascens has a significant impact on nematode stages.
  • This work advocates the integration of Streptomyces violascens into sustainable agricultural practices, showing its effectiveness as a green solution on a large scale.

Abstract: Root-knot nematodes (RKNs, Meloidogyne spp.) present a major challenge to sustainable production. The detrimental environmental impacts and increasing resistance associated with synthetic nematicides have increased the need for biocontrol alternatives. Here, we report for the first time the nematicidal properties of Streptomyces violascens and its viability as a safe and effective solution against nematode infestation. In vitro assays showed that aqueous and ethyl acetate extracts of S. violascens significantly impeded Meloidogyne sp's reproductive and locomotive functions. The aqueous extract displayed remarkable efficacy, completely inhibiting egg hatching at a concentration of 600 µg/mL, with an LC50 of 168.38 µg/mL, and causing 99% immobility of second-stage juveniles (J2s) at 800 µg/mL within 72 h. Conversely, the organic extract exhibited a 29.3% hatching rate (LC50 of 849.26 µg/mL) and 79% immobility of J2s under comparable conditions. These findings point to the robust nematicidal potential of S. violascens extracts. Enzymatic profiles supported these results, with the selected isolate producing chitinase and protease enzymes capable of degrading nematode eggshells. Our results show that the S. violascens strain can be integrated into a sustainable nematode management practice as an important agent of RKN biocontrol.

Downloads

Download data is not yet available.

References

Atandi JG, Haukeland S, Kariuki GM, Coyne DL, Karanja EN, Musyoka MW, Fiaboe KKM, Bautze D, Adamtey N. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agric Ecosyst Environ. 2017;247:265–72. http://dx.doi.org/10.1016/j.agee.2017.07.002

Coyne DL, Cortada L, Dalzell JJ, Claudius-Cole AO, Haukeland S, Luambano N, Talwana H. Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu Rev Phytopathol. 2018;56:381–403. https://doi.org/10.1146/annurev-phyto-080417-045833

Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. J Crop Prot. 2011;30(10):1251–62. http://dx.doi.org/10.1016/j.cropro.2011.04.016

Khan A, Khan A, Ali A, Fatima S, Siddiqui MA. Root-Knot Nematodes (Meloidogyne spp.): Biology, Plant-Nematode Interactions and Their Environmentally Benign Management Strategies. Gesunde Pflanzen. 2023;75(6):2187–205. https://doi.org/10.1007/s10343-023-00886-5

Vijayalaxmi B, Bhanothu V, Das VV, Padiya R, Venkateswarlu B. Meloidogyne Species (Root Knot Nematodes) Associated with Different Climatic Conditions of the Sorghum bicolor Production Sites in Telangana, India. Adv Zool Bot . 2023;11(2):85–102. https://doi.org/10.13189/azb.2023.110201

Abd-Elgawad MMM. Optimizing safe approaches to manage plant-parasitic nematodes. Plants. 2021;10(9). https://doi.org/10.3390/plants10091911

Thomason I. Challenges facing nematology: environmental risks with nematicides and the need for new approaches. In: Veech JA, Dickson DW, editors. Vistas on Nematology Society of Nematologists, Hyattsville, MD: Society of Nematologists. 1987. p. 469–79.

Ronald K, Gajurel PR, Singh B. Assessment of eco-diversity status of Homalomena aromatica (Spreng.) Schott and its habitat in tropical forest of Indian eastern Himalaya. Plant Sci Today. 2019;6(2):71–83. https://doi.org/10.14719/pst.2019.6.2.435

Ntalli NG, Menkissoglu-Spiroudi U. Pesticides of Botanical Origin: a Promising Tool in Plant Protection. In: Stoytcheva M, editor. Pesticides - Formulations, Effects, Fate. InTech; 2011. https://doi.org/10.5772/13776

Mladenović M, Arsić BB, Stanković N, Mihović N, Ragno R, Regan A, Milićević JS, Trtić-Petrović TM, Micić R. The targeted pesticides as acetylcholinesterase inhibitors: Comprehensive cross-organism molecular modelling studies performed to anticipate the pharmacology of harmfulness to humans in vitro. Molecules. 2018;23(9). https://doi.org/10.3390/molecules23092192

Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, Chu C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int J Environ Res Public Health. 2021;18(1112):1–23. https://doi.org/10.3390/ijerph18031112

Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Alotaibi SS, El-Shehawi AM, Abd El-Mageed TA, Taha AE, Alkahtani MA, Ezzat Ahmed A, Swelum AA. Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi J Biol Sci. 2022;29(4):2047–55. https://doi.org/10.1016/j.sjbs.2022.01.004

Ntalli NG, Caboni P. Botanical nematicides: A review. J. Agric. Food Chem. 2012;60(40):9929–40. https://doi.org/10.1021/jf303107j

Chen J, Li QX, Song B. Chemical Nematicides: Recent Research Progress and Outlook. J Agric Food Chem. 2020;68(44):12175–88. https://doi.org/10.1021/acs.jafc.0c02871

Ahmad G, Khan A, Khan AA, Ali A, Mohhamad HI. Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek. 2021;114(7):885–912. https://doi.org/10.1007/s10482-021-01577-9

Shilpa, Sharma P, Thakur V, Sharma A, Rana RS, Kumar P. A status-quo review on management of root knot nematode in tomato. J Hortic Sci Biotechnol. 2022;97(4):403–16. https://doi.org/10.1080/14620316.2022.2034531

Feyisa B. A Review on Root Knot Nematodes (RKNs): Impact and Methods for Control. J Plant Pathol Microbiol. 2021;12:547.

Azlay L, El Boukhari MEM, Mayad EH, Barakate M. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agric. 2023;13(1):99–117. https://doi.org/10.1007/s13165-022-00417-y

Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Omole RK, Johnson RM, Uthman QO, Babalola OO. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol. 2023;14:1–16. https://doi.org/10.3389/fmicb.2023.1040901

Bin Noor-Hassim MF, Ng CL, Teo HM, Azmi WA, Muhamad-Zalan NB, Karim NAB, Ahmad A. The utilization of microbes for sustainable food production. Biotechnologia. 2023;104(2):209–16. https://doi.org/10.5114/bta.2023.127209

Abd-Elgawad MMM, Askary TH. Fungal and bacterial nematicides in integrated nematode management strategies. Egypt J Biol Pest Control. 2018;28:74. https://doi.org/10.1186/s41938-018-0080-x

Borrajo MP, Mondino EA, Maroniche GA, Fernández M, Creus CM. Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica. Rev Argent Microbiol. 2021;54(21–30). https://doi.org/10.1016/j.ram.2021.02.010

Ait Barka E, Vatsa P, Sanchez L, Gaveau-vaillant N, Jacquard C, Klenk H, Clément C, Ouhdouch Y, Wezel P Van. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–44. https://doi.org/10.1128/MMBR.00019-15

Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules. 2023;28(15):1–33. https://doi.org/10.3390/molecules28155915

Jeon JS, Cho G, Kim S, Riu M, Song J. Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide. Chemosphere. 2024;354:141583. https://doi.org/10.1016/j.chemosphere.2024.141583

Elnahal ASM, El-Saadony MT, Saad AM, Desoky ESM, El-Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur J Plant Pathol. 2022;162(4):759–92. https://doi.org/10.1007/s10658-021-02393-7

Sharma V, Salwan R. Biocontrol Potential and Applications of Actinobacteria in Agriculture. In: Singh BP, Gupta VK, Passari AK, editors. New and Future Developments in Microbial Biotechnology and Bioengineering: Actinobacteria: Diversity and Biotechnological Applications. Elsevier B.V.; 2018. p. 93-108. http://dx.doi.org/10.1016/B978-0-444-63994-3.00006-0

Cordero I, Balaguer L, Rincón A, Pueyo JJ. Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. J Plant Nutr Soil Sci. 2018;181(5):694–703. https://doi.org/10.1002/jpln.201700480

Hoagland DR, Arnon DI. Preparing the nutrient solution. The Water-Culture Method for Growing Plants without Soil. 1950;347:29–31.

Mayad EH, Basaid K, Furze JaN, Heimeur N, Senhaji B, Bouchra C, El Hadek M, Mateille T, Idrissi Hassani LM, Ferji Z. Reversible Nematostatic Effect of Peganum harmala L. (Nitrariaceae) on Meloidogyne javanica. J Agri Search. 2019;6(1):29–33. https://doi.org/10.12921/jas.v6i1.14917

Azmani A, Lemriss S, Barakate M, Souiri A, Dhiba D, Hassani L, Hamdali H. Screening and Characterization of Streptomyces spp. Isolated from Three Moroccan Ecosystems Producing a Potential Inhibitor of the Drug Efflux Pump AcrAB-TolC. BioTech. 2022;11(3):22. https://doi.org/10.3390/biotech11030022

Barakate M, Ouhdouch Y, Oufdou K, Beaulieu C. Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antimicrobial activities. World J Microbiol Biotechnol. 2002;18:49–54. https://doi.org/10.1023/A:1013966407890

Samri SE, Baz M, Jamjari A, Aboussaid H, Messoussi S El, Meziane A El, Barakate M. Preliminary assessment of insecticidal activity of Moroccan actinobacteria isolates against mediterranean fruit fly (Ceratitis capitata ). 2015;14(10):859–66. https://doi.org/10.5897/AJB2014.14357

Errakhi R, Lebrihi A, Barakate M. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: A causal agent of root rot on sugar beet (Beta vulgaris L.). J Appl Microbiol. 2009;107(2):672–81. https://doi.org/10.1111/j.1365-2672.2009.04232.x

Oubaha B, Nafis A, Ezzanad A, Stumpe M, Mauch F, Barakate M. Potential of Moroccan isolates of plant growth promoting streptomycetes for biocontrol of the root rot disease of pea plants caused by the oomycete pathogen Aphanomyces euteiches. Biocontrol Sci Technol. 2020;1-18 https://doi.org/10.1080/09583157.2020.1846160

Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji MM, Barakate M. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J Microbiol Biotechnol. 2012;28(1):303–11. https://doi.org/10.1007/s11274-011-0820-5

Kaur T, Jasrotia S, Ohri P, Manhas RK. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol Res. 2016;192:247–52. http://dx.doi.org/10.1016/j.micres.2016.07.009

Abbott WS. A Method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7. https://doi.org/10.1093/jee/18.2.265a

Ogiga I, Estay R. The use of Meldola Blue and Nile Blue A, for distinguishing dead from living nematodes. Nematologica. 1974;20:271-6. https://doi.org/10.1163/187529274X00302

Jin N, Xue H, Li W jing, Wang X yan, Liu Q, Liu S sen, Liu P, Zhao J long, Jian H. Field evaluation of Streptomyces rubrogriseus HDZ-9-47 for biocontrol of Meloidogyne incognita on tomato. J Integr Agr. 2017;16(6):1347–57. http://dx.doi.org/10.1016/S2095-3119(16)61553-8

Suryawanshi N. Chitin from seafood waste : particle swarm optimization and neural network study for the improved chitinase production. J Chem Technol Biotechnol. 2021; 97(1):1-10. https://doi.org/10.1002/jctb.6656

Driche EH, Sabaou N, Bijani C, Zitouni A, Pont F, Mathieu F, Badji B. Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus. World J Microbiol Biotechnol. 2017;33(6):1–13. https://doi.org/10.1007/s11274-017-2265-y

Zhang B, Wu X, Tai X, Sun L, Wu M, Zhang W, Chen X, Zhang G, Chen T, Liu G, Dyson P. Variation in Actinobacterial Community Composition and Potential Function in Different Soil Ecosystems Belonging to the Arid Heihe River Basin of Northwest China. Front Microbiol. 2019;10:2209. https://doi.org/10.3389/fmicb.2019.02209

Samri SE, Baz M, Ghalbane I, Messoussi S El, Zitouni A, Meziane A El, Barakate M. Insecticidal activity of a Moroccan strain of Streptomyces phaeochromogenes LD-37 on larvae , pupae and adults of the Mediterranean fruit fly , Ceratitis capitata ( Diptera : Tephritidae ). B. Entomol Res. 2016; 107:1-8. https://doi.org/10.1017/S000748531600078X

Oubaha B, Nafis A, Barakate M. Biocontrol of Aphanomyces euteiches root rot in legumes by Streptomyces sp. Z321 isolated from Moroccan ecosystems. Biol Integr Control Plant Pathog. 2016;116:26.

Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol. 2022;13:968053. https://doi.org/10.3389/fmicb.2022.968053

Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T. Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiol Res. 2022;13(3):418–65. https://doi.org/10.3390/microbiolres13030031

Dow L, Gallart M, Ramarajan M, Law SR, Thatcher LF. Streptomyces and their specialised metabolites for phytopathogen control – comparative in vitro and in planta metabolic approaches. Front Plant Sci. 2023;14:1–14. https://doi.org/10.3389/fpls.2023.1151912

Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol. 2023;14:1285543. https://doi.org/10.3389/fmicb.2023.1285543

Al-Quwaie DA. The role of Streptomyces species in controlling plant diseases: a comprehensive review. Aust Plant Pathol. 2023;53:1–14. https://doi.org/10.1007/s13313-023-00959-z

Alamoudi SA. Using some microorganisms as biocontrol agents to manage phytopathogenic fungi: a comprehensive review. J Plant Pathol. 2024;106(1):3–21. https://doi.org/10.1007/s42161-023-01542-7

Zeng Q, Huang H, Zhu J, Fang Z, Sun Q, Bao S. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie van Leeuwenhoek. 2013;103(5):1107–11. https://doi.org/10.1007/s10482-013-9890-8

Park E, Jang H, Park CS, Lee S, Lee S, Kim K, Yun B, Lee SW, Rho M. Evaluation of Nematicidal Activity of Streptomyces yatensis KRA-28 against Meloidogyne incognita. J Microbiol Biotechnol. 2020;30(5):700–707. https://doi.org/10.4014/jmb.1908.08038

Mahajan G, Sharma V, Gupta R. Chitinase: a potent biocatalyst and its diverse applications. Biocatal Biotransform. 2024;42(2):85-109. https://doi.org/10.1080/10242422.2023.2218524

Mogollón-Ortiz ÁM, Monteiro TSA, de Freitas LG, de Queiroz MV. Potential of different species of actinobacteria in the management of Meloidogyne javanica. Arch Microbiol. 2024;206(4):1–17. https://doi.org/10.1007/s00203-024-03874-z

Atif AM, Elzamik FI, Mohamed GM, Al-Quwaie DA, Ashkan MF, Alqahtani FS, Motwali EA, Alomran MM, Alharbi NK, El-Tarabily KA, Abdelbasit HM. Biological control of the root-knot nematode (Meloidogyne incognita) on eggplants with various chitinase-producing Streptomyces strains. Eur J Plant Pathol. 2023;167:371–394. https://doi.org/10.1007/s10658-023-02718-8

Sholkamy EN, Muthukrishnan P, Abdel-Raouf N, Nandhini X, Ibraheem IBI, Mostafa AA. Antimicrobial and antinematicidal metabolites from Streptomyces cuspidosporus strain SA4 against selected pathogenic bacteria, fungi and nematode. Saudi J Biol Sci. 2020;27(1):1-12. https://doi.org/10.1016/j.sjbs.2020.08.043

Choudhary B, Nagpure A, Gupta RK. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites. J Basic Microbiol. 2015;55(12):1343–56. https://doi.org/10.1002/jobm.201500323

Meidani C, Savvidis A, Lampropoulou E, Sagia A, Katsifas E, Monokrousos N, Hatzinikolaou DG, Karagouni AD, Giannoutsou E, Adamakis IDS, Ntalli NG. Τhe Nematicidal Potential of Bioactive Streptomyces Strains Isolated from Greek Rhizosphere Soils Tested on Arabidopsis Plants of Varying Susceptibility to Meloidogyne spp. Plants. 2020;9(6):1–16. https://doi:10.3390/plants9060699

Downloads

Published

2024-10-25

How to Cite

1.
Azlay L, Oubassou E-Z, Berr A, Mayad EH, Barakate M. In vitro assessment of the nematicidal potential of Streptomyces violascens strain AS2 against root-knot nematodes (Meloidogyne sp.). Arch Biol Sci [Internet]. 2024Oct.25 [cited 2025Jan.22];76(3):345-58. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/10041

Issue

Section

Articles