Regulation of noradrenaline synthesis, uptake, and degradation in the left ventricle by fatty acid amide hydrolase (FAAH) inhibitor URB597 in the chronic unpredictable stress model of depression

Authors

  • Harisa Ferizović Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-5667-7254
  • Nataša Spasojević Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-8843-7976
  • Milica Janković Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-5189-9472
  • Bojana Stefanović Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0002-1360-5514
  • Slađana Dronjak Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0002-4334-8002

DOI:

https://doi.org/10.2298/ABS240731028F

Keywords:

noradrenaline, chronic unpredictable stress, endocannabinoids, left ventricale, xperimental rat

Abstract

Paper description:

  • Depressive patients are likely to experience cardiovascular disease. Pharmacological suppression of fatty acid amide hydrolase (FAAH) activity presents a promising approach for treating mood disorders.
  • An animal model of depression was used to assess the effects of FAAH inhibitor URB597 on noradrenaline levels and catecholamine turnover in the left ventricle in both sexes.
  • URB597 treatment led to increased expression of dopamine-β-hydroxylase (DBH) in stressed males, elevated noradrenaline transporter (NET), and decreased monoamine oxidase-A (MAO-A) levels in the left ventricle of stressed rats of both sexes.
  • Our results offer insight for developing new treatments for comorbidity of depression and heart disease.

Abstract: Depression has been linked to the dysfunction of the autonomic nervous system, which may cause dysregulation of the cardiovascular system. One promising therapeutic strategy for treating different diseases is inhibiting the enzyme fatty acid amide hydrolase (FAAH), which increases the availability of endogenous cannabinoids. We examined the effect of chronic FAAH inhibition with URB597 treatment on the noradrenaline (NA) content, synthesis, transport, and degradation in the left ventricle of female and male rats exposed to chronic unpredictable stress (CUS). CUS decreased the levels of both NA and dopamine-β-hydroxylase (DBH) protein in male rats and decreased NA transporter (NET) protein levels in female rats while elevating monoamine oxidase A (MAO-A) in both sexes. Intraperitoneal URB597 application led to increased expression of DBH in stressed males, as well as elevated NET protein levels and decreased MAO-A protein levels in the left ventricle of stressed rats of both sexes. URB597 treatment may have a beneficial effect on the cardiovascular system in an animal model of depression with heightened sympathoneural activity.

Downloads

Download data is not yet available.

References

Chotritthirong Y, Chulikhit Y, Daodee S, Boonyarat C, Maneenet J, Khamphukdee C, Kwankhao P, Pitiporn S, Monthakantirat O. Possible mechanisms for the prevention of anxiety and depressive-like behavior in a chronic mild stress mouse model by the Thai herbal medicine with Nelumbo nucifera, Centella asiatica, and Piper nigrum. Rev Bras Farmacogn. 2023;33(4):756-67. https://doi.org/10.1007/s43450-023-00401-x

Palma J-A, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83(3):261-71. https://doi.org/10.1212/WNL.0000000000000605

Otte C, Neylan TC, Pipkin SS, Browner WS, Whooley MA. Depressive symptoms and 24-hour urinary norepinephrine excretion levels in patients with coronary disease: findings from the Heart and Soul Study. Am J Psychiatry. 2005;162(11):2139-45. https://doi.org/10.1176/appi.ajp.162.11.2139

van Marwijk HW, van der Kooy KG, Stehouwer CD, Beekman AT, van Hout HP. Depression increases the onset of cardiovascular disease over and above other determinants in older primary care patients, a cohort study. BMC Cardiovasc Disord. 2015;(15):1-7. https://doi.org/10.1186/s12872-015-0036-y

Grippo AJ, Beltz TG, Weiss RM, Johnson AK. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry. 2006;59(4):309-16. https://doi.org/10.1016/j.biopsych.2005.07.010

Dawood T, Lambert EA, Barton DA, Laude D, Elghozi J-L, Esler MD, Haikerwal D, Kaye DM, Hotchkin EJ, Lambert GW. Specific serotonin reuptake inhibition in major depressive disorder adversely affects novel markers of cardiac risk. Hypertens Res. 2007;30(4):285-93. https://doi.org/10.1291/hypres.30.285

Dronjak S, Spasojevic N, Gavrilovic L, Varagic V. Effects of noradrenaline and serotonin reuptake inhibitors on pituitary-adrenocortical and sympatho-adrenomedullar system of adult rats. Neuro Endocrinol Lett. 2007;28(5):614-20.

Blardi P, de Lalla A, Auteri A, Iapichino S, Dell'Erba A, Castrogiovanni P. Plasma catecholamine levels after fluoxetine treatment in depressive patients. Neuropsychobiology. 2005;51(2):72-6. https://doi.org/10.1159/000084163

Toczek M, Malinowska B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci. 2018;204:20-45. https://doi.org/10.1016/j.lfs.2018.04.054

Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther. 2005;313(1):352-8. https://doi.org/10.1124/jpet.104.078980

Carnevali L, Vacondio F, Rossi S, Callegari S, Macchi E, Spadoni G, Bedini A, Rivara S, Mor M, Sgoifo A. Antidepressant-like activity and cardioprotective effects of fatty acid amide hydrolase inhibitor URB694 in socially stressed Wistar Kyoto rats. Eur Neuropsychopharmacol. 2015;25(11):2157-69. https://doi.org/10.1016/j.euroneuro.2015.07.015

Bedse G, Romano A, Tempesta B, Lavecchia MA, Pace L, Bellomo A, Duranti A, Micioni Di Bonaventura MV, Cifani C, Cassano T. Inhibition of anandamide hydrolysis enhances noradrenergic and GABAergic transmission in the prefrontal cortex and basolateral amygdala of rats subjected to acute swim stress. J Neurosci Res. 2015;93(5):777-87. https://doi.org/10.1002/jnr.23539

Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav. 2020;227:113174. https://doi.org/10.1016/j.physbeh.2020.113174

Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monaghan EP, Parrott JA, Putman D. Pharmacological profile of the selective FAAH inhibitor KDS‐4103 (URB597). CNS Drug Rev. 2006;12(1):21-38. https://doi.org/10.1111/j.1527-3458.2006.00021.x

Toczek M, Baranowska-Kuczko M, Grzęda E, Pędzińska-Betiuk A, Weresa J, Malinowska B. Age-specific influences of chronic administration of the fatty acid amide hydrolase inhibitor URB597 on cardiovascular parameters and organ hypertrophy in DOCA-salt hypertensive rats. Pharmacol Rep. 2016;68(2):363-9. https://doi.org/10.1016/j.pharep.2015.10.004

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6

Grippo AJ, Moffitt JA, Johnson AK. Cardiovascular alterations and autonomic imbalance in an experimental model of depression. Am J Physiol Regul Integr Comp Physiol. 2002;282(5):R1333-R41. https://doi.org/10.1152/ajpregu.00614.2001

Shyu K, Kuan P, Chang M, Wang B, Huang F. Effects of norepinephrine on apoptosis in rat neonatal cardiomyocytes. J Formos Med Assoc. 2000;99(5):412-8.

Ferizovic H, Spasojevic N, Puskas N, Stefanovic B, Jankovic M, Djelic N, Dronjak S. URB597 attenuates stress-induced ventricular structural remodeling by modulating cytokines, NF-κB, and JAK2/STAT3 pathways in female and male rats. Can J Physiol Pharmacol. 2023;101(8):400-12. https://doi.org/10.1139/cjpp-2022-0535

Carlsson M, Carlsson A. Effects of mild stress on adrenal and heart catecholamines in male and female rats. J Neural Transm. 1989;77:217-26. https://doi.org/10.1007/BF01248934

Lee J, Harley VR. The male fight‐flight response: A result of SRY regulation of catecholamines? Bioessays. 2012;34(6):454-7. https://doi.org/10.1002/bies.201100159

Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89(2):535-606. https://doi.org/10.1152/physrev.00042.2006

Takechi S, Nomura A, Shimono H, Katoh K, Kakinoki S, Jin E-Z, Akutsu M, Kitabatake A. Recovery of cardiac norepinephrine concentration and tyrosine hydroxylase activity by the central α2-adrenoceptor agonist guanabenz in rats with aortic constriction. J Cardiovasc Pharmacol. 1999;33(3):409-13. https://doi.org/10.1097/00005344-199903000-00010

Kreusser MM, Lehmann LH, Haass M, Buss SJ, Katus HA, Lossnitzer D. Depletion of cardiac catecholamine stores impairs cardiac norepinephrine re-uptake by downregulation of the norepinephrine transporter. PLoS One. 2017;12(3):e0172070. https://doi.org/10.1371/journal.pone.0172070

Shanks J, Manou-Stathopoulou S, Lu C-J, Li D, Paterson DJ, Herring N. Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2013;305(7):H980-6. https://doi.org/10.1152/ajpheart.00255.2013

Villeneuve C, Guilbeau-Frugier C, Sicard P, Lairez O, Ordener C, Duparc T, De Paulis D, Couderc B, Spreux-Varoquaux O, Tortosa F. p53-PGC-1α pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal. 2013;18(1):5-18. https://doi.org/10.1089/ars.2011.4373

Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011;1813(7):1323-32. https://doi.org/10.1016/j.bbamcr.2010.09.010

Datta C, Bhattacharjee A. Role of monoamine oxidase A (MAO-A) in cardiac aging. J Cardiol Cardiovasc Sci. 2020;4(2). https://doi.org/10.29245/2578-3025/2020/2.1189

Manni ME, Rigacci S, Borchi E, Bargelli V, Miceli C, Giordano C, Raimondi L, Nediani C. Monoamine oxidase is overactivated in left and right ventricles from ischemic hearts: an intriguing therapeutic target. Oxid Med Cell Longev. 2016;2016(1):4375418. https://doi.org/10.1155/2016/4375418

Godlewski G, Alapafuja SO, Bátkai S, Nikas SP, Cinar R, Offertáler L, Osei-Hyiaman D, Liu J, Mukhopadhyay B, Harvey-White J. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem Biol. 2010;17(11):1256-66. https://doi.org/10.1016/j.chembiol.2010.08.013

Łupiński S, Schlicker E, Pądzińska-Betiuk A, Malinowska B. Acute myocardial ischemia enhances the vanilloid TRPV1 and serotonin 5-HT3 receptor-mediated Bezold-Jarisch reflex in rats. Pharmacol Rep. 2011;63(6):1450-9. https://doi.org/10.1016/S1734-1140(11)70709-5

Rudź R, Schlicker E, Baranowska U, Marciniak J, Karabowicz P, Malinowska B. Acute myocardial infarction inhibits the neurogenic tachycardic and vasopressor response in rats via presynaptic cannabinoid type 1 receptor. J Pharmacol Exp Ther. 2012;343(1):198-205. https://doi.org/10.1124/jpet.112.196816

Mazor M, Dvilansky A, Aharon M, Lazarovitz Z, Nathan I. Effect of cannabinoids on the activity of monoamine oxidase in normal human platelets. Arch Int de Physiol Biochim. 1982;90(1):15-20. https://doi.org/10.3109/13813458209082649

Ribeiro R, Wen J, Li S, Zhang Y. Involvement of ERK1/2, cPLA2 and NF-κB in microglia suppression by cannabinoid receptor agonists and antagonists. Prostaglandins Other Lipid Mediat. 2013;100:1-14. https://doi.org/10.1016/j.prostaglandins.2012.11.003

Fattore L, Fratta W. How important are sex differences in cannabinoid action? Br J Pharmacol. 2010;160(3):544-8. https://doi.org/10.1111/j.1476-5381.2010.00776.x

Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex differences in molecular signaling at inhibitory synapses in the hippocampus. J Neurosci. 2015;35(32):11252-65. https://doi.org/10.1523/JNEUROSCI.1067-15.2015

Zer‐Aviv TM, Akirav I. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress. Hippocampus. 2016;26(7):947-57. https://doi.org/10.1002/hipo.22577

Downloads

Published

2024-10-25

How to Cite

1.
Ferizović H, Spasojević N, Janković M, Stefanović B, Dronjak S. Regulation of noradrenaline synthesis, uptake, and degradation in the left ventricle by fatty acid amide hydrolase (FAAH) inhibitor URB597 in the chronic unpredictable stress model of depression. Arch Biol Sci [Internet]. 2024Oct.25 [cited 2025Jan.22];76(3):359-67. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/10153

Issue

Section

Articles