Methylenetetrahydrofolate reductase gene polymorphisms, lipid profiles, and basic renal functional markers as risk for myocardial infarction: a case-control study and haplotype analysis
DOI:
https://doi.org/10.2298/ABS240801035PKeywords:
myocardial infarction, methylenetetrahydrofolate reductase gene polymorphisms, myocardial infarction risk factors, haplotype analysis, renal functional markersAbstract
Paper description:
- The interplay of genetic and environmental factors causes myocardial infarction (MI), characterized by gradual worsening of atherosclerosis.
- The association of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C gene variants and different haplotypes, and the risk of MI were examined in the Montenegrin population.
- The MTHFR C677T polymorphism is associated with a higher risk of MI (P=0.006) and the A-T haplotype (P=0.004). C677T and A1298C MTHFR polymorphisms are associated with elevated creatinine levels in MI patients (P=0.003 and P=0.002, respectively).
- The MTHFR C677T polymorphism is associated with MI and is a potential genetic risk factor.
Abstract: Myocardial infarction (MI) is a serious cardiovascular disease and the primary cause of mortality, with a complex etiopathology. Identifying the genetic basis of myocardial infarction (MI) is essential for developing personalized medical treatments. This study examined the possible association between polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene and MI. In the study, 120 patients with MI and 120 age-and-sex-matched controls were genotyped for C677T and A1298C MTHFR polymorphisms by the allele-specific or amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). In the case of the C677T polymorphism, the T/T and C/T genotypes were associated with a significantly increased risk of MI under the dominant genetic model (odds ratio (OR)=2.060; P=0.006). Although there was no significant association between the A1298C variant and MI, this polymorphism was linked to a higher level of creatinine in MI patients (P<0.002). A similar association was observed for the C677T polymorphism (P=0.003). An A-T haplotype represented an increased risk for MI (OR=1.630; P=0.014), whereas the A-C haplotype had a protective role (R=0.517; P=0.002). These findings indicate that C677T MTHFR polymorphism is strongly associated with and increased risk of MI, making it a potential genetic risk factor and a possible predictor of MI.
Downloads
References
Moraes-Silva IC, Rodrigues B, Coelho-Junior HJ, Jardim Feriani D, Irigoyen MC. Myocardial Infarction and Exercise Training: Evidence from Basic Science. Adv Exp Med Biol. 2017; 999:139-53. https://doi.org/10.1007/978-981-10-4307-9_9
Chadwick Jayaraj J, Davatyan K, Subramanian SS, Priya J. Epidemiology of Myocardial Infarction. In: Pamukçu B, editor. Myocardial Infarction. IntechOpen; 2019. https://doi.org/10.5772/intechopen.74768
Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Asghar Khaleghi A, Hezarkhani L Shohaimi S. et Mohammadi M. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2023; 23:206. https://doi.org/10.1186/s12872-023-03231-w
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-95. https://doi.org/10.1056/NEJMra043430
Hou J, Zhong Z, Deng Q, Lin L. and Zeng X. The role of MTHFR C677T and ALDH2 Glu504Lys polymorphism in acute coronary syndrome in a Hakka population in southern China. BMC Cardiovasc Disord. 2020;20:127. https://doi.org/10.1186/s12872-020-01410-7
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52. https://doi.org/10.1016/S0140-6736(04)17018-9
Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: an update. Int J Hypertens. 2013; 2013:653789. https://doi.org/10.1155/2013/653789
Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham heart study and the epidemiology of cardiovascular diseases: a historical perspective. Lancet. 2014;383(9921):999-1008. https://doi.org/10.1016/S0140-6736(13)61752-3
Ryoo JH, Cho SH, Kim SW. Prediction of risk factors for coronary heart disease using Framingham risk score in Korean men. PLoS One. 2012;7(9):e45030. https://doi.org/10.1371/journal.pone.0045030
Dai X, Wiernek S, Evans JP, Runge MS. Genetics of coronary artery disease and myocardial infarction. World J Cardiol. 2016;8(1):1-23. https://doi.org/10.4330/wjc.v8.i1.1
Tirdea C, Hostiuc S, Moldovan H, Scafa-Udriste A. Identification of Risk Genes Associated with Myocardial Infarction-Big Data Analysis and Literature Review. Int J Mol Sci. 2022;23(23):15008. https://doi.org/10.3390/ijms232315008
Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. https://doi.org/10.1186/1475-2891-14-6
Motulsky A.G, Brunzell J.D. Genetics of coronary atherosclerosis, Oxford Monographs On Medical Genetics. Int J Cardiol Heart Vasc. 2023;49:101293.
Boldyrev A, Bryushkova E, Mashkina A, Vladychenskaya E. Why is homocysteine toxic for the nervous and immune systems? Curr Aging Sci. 2013;6:29-36. https://doi.org/10.2174/18746098112059990007
McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111-28.
Pinzon RT, Wijaya VO, Veronica V. The role of homocysteine levels as a risk factor of ischemic stroke events: a systematic review and meta-analysis. Front Neurol. 2023;14:1144584 https://doi.org/10.3389/fneur.2023.1144584
Hmimech W, Idrissi HH, Diakite B, Baghdadi D, Korchi F, Habbal R, Nadifi S. Association of C677T MTHFR and G20210A FII prothrombin polymorphisms with susceptibility to myocardial infarction. Biomed Rep. 2016;5(3):361-366. https://doi.org/10.3892/br.2016.717
Oztuzcu S, Ergun S, Ulaşlı M, Nacarkahya G, Iğci YZ, Iğci M, Bayraktar R, Tamer A. Cakmak E, Arslan A. Evaluation of Factor V G1691A, prothrombin G20210A, Factor XIII V34L, MTHFR A1298C, MTHFR C677T and PAI-1 4G/5G genotype frequencies of patients subjected to cardiovascular disease (CVD) panel in south-east region of Turkey. Mol Biol Rep. 2014;41(6):3671-6. https://doi.org/10.1007/s11033-014-3231-5
Mallhi TH, Shahid M, Rehman K, Khan YH, Alanazi AS, Alotaibi NH, Hamid Akash MS, Butt MH. Biochemical Association of MTHFR C677T Polymorphism with Myocardial Infarction in the Presence of Diabetes Mellitus as a Risk Factor. Metabolites. 2023;13(2):251. https://doi.org/10.3390/metabo13020251
Nefic H, Mackic-Djurovic M, Eminovic I. The Frequency of the 677C>T and 1298A>C Polymorphisms in the Methylenetetrahydrofolate Reductase (MTHFR) Gene in the Population. Med Arch. 2018;72(3):164-169. https://doi.org/10.5455/medarh.2018.72.164-169
Toffoli G, Russo A, Innocenti F, Corona G, Tumolo S, Sartor F, Mini E, Boiocchi M. Effect of methylenetetrahydrofolate reductase 677C-->T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int J Cancer. 2003;103(3):294-9. https://doi.org/10.1002/ijc.10847
Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet. 1999;354:407-13. https://doi.org/10.1016/S0140-6736(98)11058-9
Clément A, Amar E, Brami C, Clément P, Alvarez S, Jacquesson-Fournols L,Davy C, Lalau-Keraly M, Menezo Y. MTHFR SNPs (Methyl Tetrahydrofolate Reductase, Single Nucleotide Polymorphisms) C677T and A1298C Prevalence and Serum Homocysteine Levels in >2100 Hypofertile Caucasian Male Patients. Biomolecules. 2022;12(8):1086. https://doi.org/10.3390/biom12081086
Samii A, Aslani S, Imani D, Razi B, Samaneh Tabaee S, Jamialahmadi T, Sahebkar A.MTHFR gene polymorphisms and susceptibility to myocardial infarction: Evidence from meta-analysis and trial sequential analysis. Int J Cardiol Heart Vasc. 2023;49:101293. https://doi.org/10.1016/j.ijcha.2023.101293
Alizadeh S, Djafarian K, Moradi S, Shab-Bidar S. C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: A systematic review and meta-analysis. Int J Cardiol. 2016;217:99-108. https://doi.org/10.1016/j.ijcard.2016.04.181
Eftychiou C, Antoniades L, Makri L, Koumas L, Costeas PA, Kyriakou E, Nicolaides E, Papadogiannis D. Homocysteine levels and MTHFR polymorphisms in young patients with acute myocardial infarction: a case control study. Hellenic J Cardiol. 2012;53(3):189-94.
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. [cited 2024 May 15] Available from: https://www.R-project.org/
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D. Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75. https://doi.org/10.1086/519795
Moore CM, Jacobson SA, Fingerlin TE. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. Hum Hered. 2019;84(6):256-271. https://doi.org/10.1159/000508558
Iversen B, Jacobsen BK, Løchen ML. Active and passive smoking and the risk of myocardial infarction in 24,968 men and women during 11 year of follow-up: the Tromsø Study. Eur J Epidemiol. 2013;28(8):659-67. https://doi.org/10.1007/s10654-013-9785-z
Chen X, Jin H, Wang D, Liu J, Qin Y, Zhang Y, Zhang Y, Xiang Q. Serum creatinine levels, traditional cardiovascular risk factors and 10-year cardiovascular risk in Chinese patients with hypertension. Front Endocrinol (Lausanne). 2023;14:1140093. https://doi.org/10.3389/fendo.2023.1140093
Fried LF, Shlipak MG, Crump C, Bleyer AJ, Gottdiener JS, Kronmal RA, Kuller LH, Newman AB. Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J Am Coll Cardiol. 2003;41(8):1364-72. https://doi.org/10.1016/S0735-1097(03)00163-3
Bagheri B, Radmard N, Faghani-Makrani A, Rasouli M. Serum Creatinine and Occurrence and Severity of Coronary Artery Disease. Med Arch. 2019;73(3):154-156. https://doi.org/10.5455/medarh.2019.73.154-156
El-Khawaga OY, Al-Azzawy MF, El-Dawa AN, ElSaid AM, Mustafa W, Saad M. Association study between genetic polymorphisms in MTHFR and stroke susceptibility in Egyptian population: a case-control study. Sci Rep. 2024;14(1):114. https://doi.org/10.1038/s41598-023-50277-z
Nakai K, Fusazaki T, Suzuki T, Ohsawa M, Ogiu N, Kamata J, Kawazoe K, Nakai K, Itoh C, Yanagisawa M, Ishida T, Hiramori K. Genetic polymorphism of 5,10-methylenetetrahydrofolate increases risk of myocardial infarction and is correlated to elevated levels of homocysteine in the Japanese general population. Coron Artery Dis. 2000;11(1):47-51. https://doi.org/10.1097/00019501-200002000-00009
Uçar F, Celik S, Yücel B, Sönmez M, Celep F, Erkut N. MTHFR C677T polymorphism and its relationship to myocardial infarction in the Eastern Black Sea region of Turkey. Arch Med Res. 2011;42(8):709-12. https://doi.org/10.1016/j.arcmed.2011.12.007
Cerne D, Kaplan-Pavlovcic S, Kranjec I, Jurgens G. Mildly elevated serum creatinine concentration correlates with the extent of coronary atherosclerosis. Ren Fail. 2000;22(6):799-808. https://doi.org/10.1081/JDI-100101965
Kavaric N, Klisic A, Ninic A. Cardiovascular risk estimated by UKPDS risk engine algorithm in diabetes. Open Medicine. 2018;13(1): 610-7. https://doi.org/10.1515/med-2018-0086
Weisberg I, Tran P, Christensen B, Sibani S, Rozen R. A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab. 1998;64(3):169-72. https://doi.org/10.1006/mgme.1998.2714
Kumar J, Das SK, Sharma P, Karthikeyan G, Ramakrishnan L, Sengupta S. Homocysteine levels are associated with MTHFR A1298C polymorphism in Indian population. J Hum Genet. 2005;50(12):655-63. https://doi.org/10.1007/s10038-005-0313-1
Söderström E, Andersson J, Söderberg S, van Guelpen B, Nilsson TK, Hultdin J. CTH G1208T and MTHFR A1298C polymorphisms are associated with a higher risk of a first myocardial infarction with fatal outcome among women. Drug Metab Pers Ther. 2022;38(1):57-63. https://doi.org/10.1515/dmpt-2022-0119
Nasiri M, Roostaei A, Ehsanian Z. Association of Methylenetetrahydrofolate Reductase (MTHFR) Gene C677T and A1298C Polymorphisms with Myocardial Infarction from North of Fars Province. Res Mol Med. 2014;2(3):36-4. https://doi.org/10.18869/acadpub.rmm.2.3.36
Fuadi MR, Nugraha JR, Suryawan IGR, Kahar H, Aryati A, Prabowo GI, Utomo B, I'tishom R. Effect of MTHFR A1298C Gene Polymorphism on Acute Coronary Syndrome. ARYA Atheroscler. 2023;19(2):8-13.
Al-Mahroos MI, Alhaleem MR, Mshimesh BA. Haplotype analysis and linkage disequilibrium of MTHFR gene polymorphisms associated with recurrent thrombosis. J Popl Ther Clin Pharmacol. 2023;30(1):196-205. https://doi.org/10.47750/jptcp.2023.1040
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Svetlana Perovic, Slavica Vujovic, Lejla Kapur Pojskic, Nemanja Garai, Andjelka Scepanovic
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.