ABA enhances the apoptotic effect of docetaxel in the multidrug-resistant DU145 prostate cancer cell line
DOI:
https://doi.org/10.2298/ABS240812031SKeywords:
docetaxel, drug resistance, HSP70, GRP94, ABAAbstract
Paper description:
- Serial application of docetaxel and mitoxantrone causes drug resistance.
- Development and reversal of drug resistance caused by combined treatment with docetaxel and mitoxantrone was examined in the DU145 prostate cancer cell line.
- Abscisic acid increased the apoptotic effect of docetaxel on the resistant DU145 cell line via the suppressive effect on heat shock proteins.
- Abscisic acid exerts a complementary effect for drugs used to treat prostate and other cancers.
Abstract: This study aimed to induce drug resistance in DU145 prostate cancer cells by exposing them to docetaxel and mitoxantrone, and to examine the effects of combining docetaxel and abscisic acid (ABA). The IC50 values for docetaxel and mitoxantrone in non-resistant cells were 54.57 nM and 6.25 nM, respectively, rising to 808.53 nM and 50.07 nM after resistance had developed. RT-PCR analysis showed that treatment of resistant cells with 50.07 nM docetaxel and 500 μM ABA (ABA) resulted in the following changes in gene expression: heat shock protein (HSP) 70 (0.63-fold), glucose-regulated protein 94 (GRP94) 0.33-fold, inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) 1.62-fold, ER degradation-enhancing alpha-mannosidase-like 1 (EDEM1) 1.77-fold, X-box binding protein 1 (XBP1) 1.53-fold, p21 (2.53-fold), cellular tumor antigen p53 (p53) 2.49-fold, bcl-2-like protein 4 (Bax) 2.7-fold, and tumor necrosis factor (TNF-α) 6.35-fold. Tali™ cytometry analysis showed a 47% increase in apoptotic/necrotic cells with the combined treatment of docetaxel and ABA, compared to a 26% increase with docetaxel alone. Fluorescent staining revealed that co-administration of docetaxel and ABA increases apoptosis in resistant DU145 cells compared to treatment with docetaxel alone. This study suggests that combining ABA with docetaxel could be effective in drug-resistant prostate cancer.
Downloads
References
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229-63. https://doi.org/10.3322/caac.21834
Pantziarka P, Capistrano R, De Potter A, Vanderborne L, Bouche G. An Open Access Database of Licensed Cancer Drugs. Frontiers in Pharmacology. 2021;12:627574. https://doi.org/10.3389/fphar.2021.627574
Luqmani YA. Mechanisms of Drug Resistance in Cancer Chemotherapy. Med Princ Prac. 2005;14:35-48. https://doi.org/10.1159/000086183
Persidis A. Cancer multidrug resistance. Nature Biotech. 1999;17:94-5. https://doi.org/10.1038/5289
Cortes JE, Pazdur R. Docetaxel. J Clin Onc. 1995;13:2643-55. https://doi.org/10.1200/JCO.1995.13.10.2643
Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jr. Jones JA, Taplin ME. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New Eng J Med. 2004;351:1513-20. https://doi.org/10.1056/NEJMoa041318
Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostatecancer. The New Eng J Med. 2004;351:1502-12. https://doi.org/10.1056/NEJMoa040720
Laurens V, Magadoux L, Isambert N, Plenchette S, Jeannin JF. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer. Int J Onc. 2014;45:919-28. https://doi.org/10.3892/ijo.2014.2517
Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem, 2007;2:920-42. https://doi.org/10.1002/cmdc.200600308
Seruga B, Ocana A, Tannock IF. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Onc. 2011;8:12-23. https://doi.org/10.1038/nrclinonc.2010.136
Harris KA, Reese DM. Treatment options in hormone-refractory prostate cancer: current and future approaches. Drugs. 2001;61:2177-92. https://doi.org/10.2165/00003495-200161150-00003
Powles TJ. Evolving clinical strategies: innovative approaches to the use of mitoxantrone-introduction. Eur J Cancer Care. 1997;6(4):1-3. https://doi.org/10.1111/j.1365-2354.1997.tb00317.x
Rigacci L, Carpaneto A, Alterini R, Carrai V, Bernardi F, Bellesi G, Longo G, Bosi A, Rossi FP. Treatment of large cell lymphoma in elderly patients with a mitoxantrone, cyclophosphamide, etoposide, and prednisone regimen: longterm follow-up results. Cancer. 2003;97:97-104. https://doi.org/10.1002/cncr.11032
Errington F, Willmore E, Tilby MJ, Li L, Li G, Li W, Baguley BC, Austin CA. Murine transgenic cells lacking DNA topoisomerase II b are resistant to acridines and mitoxantrone: analysis of cytotoxicity and cleavable complex formation. Mol Pharm. 1999;56:1309-16. https://doi.org/10.1124/mol.56.6.1309
Harker WG, Slade DL, Parr RL, Feldhoff PW, Sullivan DM, Holguin MH. Alterations in the topoisomerase II a gene, messenger RNA, and subcellular protein distribution as well as reduced expression of the DNA topoisomerase II b enzyme in a mitoxantrone-resistant HL-60 human leukemia cell line. Can Res. 1995;55:1707-16.
Harker WG, Slade DL, Drake FH, Parr RL. Mitoxantrone resistance in HL-60 leukemia cells: reduced nuclear topoisomerase II catalytic activity and druginduced DNA cleavage in association with reduced expression of the topoisomerase II b isoform. Biochemistry. 1991;30:9953-61. https://doi.org/10.1021/bi00105a020
Zhou R, Wang Y, Gruber A, Larsson R, Castanos-Velez E, Liliemark E. Topoisomerase II-mediated alterations of K562 drug resistant sublines. Med Onc. 1999:16(3):191-8. https://doi.org/10.1007/BF02906131
Bukowski K, Kciuk M, Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J Mol Sci. 2020;21(9):3233. https://doi.org/10.3390/ijms21093233
Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000;3:217-23. https://doi.org/10.1016/S1369-5266(00)80068-0
Schroeder JI, Kwak JM, Allen GJ. Guard cell ABA signalling and engineering drought hardiness in plants. Nature. 2001:410:327-30. https://doi.org/10.1038/35066500
Li HH, Hao RL, Wu SS, Guo PC, Chen CJ, Pan LP, Ni H. Occurrence, function and potential medicinal applications of the phytohormone ABA in animals and humans. Biochem Pharm. 2011;82:701-12. https://doi.org/10.1016/j.bcp.2011.06.042
Sakthivel P, Sharma N, Klahn P, Gereke M, Bruder D. ABA: a phytohormone and mammalian cytokine as novel pharmacon with potential for future development into clinical applications. Curr Med Chem. 2016;23:1549-70 . https://doi.org/10.2174/0929867323666160405113129
Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang Y, Hotchkin M, Lee E, Buttitta L, Taichman RS. Tumor removal limits prostate cancer cell dissemination in bone and osteoblasts induce cancer cell dormancy through focal adhesion kinase. Neoplasia. 2021;23:102-11. https://doi.org/10.1016/j.neo.2020.11.009
Zhou N, Yao Y, Ye H, Zhu W, Chen L, Mao Y. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway. Int J Can. 2016;138:1947-58. https://doi.org/10.1002/ijc.29935
Erdogan S, Doganlar O, Doganlar ZB, Serttas R, Turkekul K, Dibirdik I, Bilir A. The flavonoid apigenin reduces prostate cancer CD44+ stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sciences. 2016;162:77-86. https://doi.org/10.1016/j.lfs.2016.08.019
Lockhart CA, Tirona RG, Kim RB. Pharmacogenetics of ATP-binding Cassette Transporters in Cancer and Chemotherapy. Mol Cancer Ther. 2003;2:685-98.
Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, Dahut W, Sparreboom A, Figg WD. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen independent prostate cancer treated with docetaxel. Clin Cancer Res. 2008;14(14):4543-9. https://doi.org/10.1158/1078-0432.CCR-07-4230
Moreira JMA, Lima TS, Iglesias-Gato D, Souza LDO, Stenvang, Lima JDS, Røder MA, Brasso K. Molecular Profiling of Docetaxel-Resistant Prostate Cancer Cells Identifies Multiple Mechanisms of Therapeutic Resistance. Cancers. 2021;13:1290. https://doi.org/10.3390/cancers13061290
Llesuy SF, Arnaiz SL. Hepatotoxicity of mitoxantrone and doxorubicin. Toxicology. 1990;63(2):187-98. https://doi.org/10.1016/0300-483X(90)90042-F
Marzec M, Eletto D, Argon Y. GRP94: an HSP90-like protein specialized for protein folding and quality control in the Endoplasmic Reticulum. Biochim Biophys Acta. 2012;1823(3):774-87. https://doi.org/10.1016/j.bbamcr.2011.10.013
Amankwah YS, Collins P, Fleifil Y, Unruh, E, Márquez KJR, Vitou K, Kravats AN. Grp94 Works Upstream of BiP in Protein Remodeling Under Heat Stress. J Mol Biol. 2022;19:167762. https://doi.org/10.1016/j.jmb.2022.167762
Kadowaki H, Nishitoh H. Signaling Pathways from the Endoplasmic Reticulum and Their Roles in Disease. Genes. 2013;4:306-33. https://doi.org/10.3390/genes4030306
Kobayashi N, Takada Y, Hachiya M, Ando K, Nakajima N, Akashi M. Tnf-α Induced p21WAF1 but Not BAX in Colon Cancer Cells WiDr With Mutated p53: Important Role of Protein Stabilization. Cytokine. 2000;12:1745-54. https://doi.org/10.1006/cyto.2000.0782
Cho EK, Hong CB. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 2006;25:349-58. https://doi.org/10.1007/s00299-005-0093-2
Volkov RA, Panchuk II, Mullineaux PM, Schoffl F. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol. 2006;61:733-46. https://doi.org/10.1007/s11103-006-0045-4
Hu XL, Liu RX, Li YH, Wang W, Tai FJ, Xue RL, Li CH. Heat shock protein 70 regulates the ABA-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Reg. 2010;60:225-35. https://doi.org/10.1007/s10725-009-9436-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Deniz Şumnulu, Zeynep Banu Doğanlar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.