Antimicrobial activity of chitosan-silver nanoparticles made from jewelry industry silver waste
DOI:
https://doi.org/10.2298/ABS240904034PKeywords:
silver waste, jewelry industry, chitosan, nanoparticle synthesis, antimicrobial actionAbstract
Paper description:
- Novel chitosan-silver nanoparticles (CS-AgNPs) have been synthesized from recycled silver.
- CS-AgNPs were examined as antimicrobial agents based on the inhibition zone, MIC50, and microbial growth inhibition.
- CS-AgNP effectively inhibited the growth of coli, S. aureus, and C. albicans.
- CS-AgNP-based products may be promising in local antibacterial therapy.
Abstract: Local management of bacterial infections is challenging. The antimicrobial effect of silver has long been recognized, but its use is limited due to its expensive nature and reduced applicability in liquids. This study aimed to synthesize chitosan-silver nanoparticles (CS-AgNPs) from reusable silver waste of the jewelry industry and investigate their antimicrobial properties against pathogenic microorganisms. X-Ray diffraction (XRD) analysis was used to confirm the crystalline structure of the recycled silver, with a strong diffraction peak observed at 2θ=38.60°. Agar disk diffusion showed inhibitory effects for CS-AgNPs on the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans that depended on the concentration of AgNO3 solution used for preparation. In these tests, S. aureus was more susceptible to the treatment than E. coli and C. albicans. The CS-AgNP inhibited the growth of tested microorganisms with minimum inhibitory concentration (MIC50) values between 1.7 and 4.25 mg/mL. These findings highlight the potential of CS-AgNPs as effective antimicrobial agents. The use of waste materials in nanoparticle synthesis in this research offers a promising approach for sustainable and eco-friendly nanotechnology.
Downloads
References
Karmakar S, Maity P, Halder A. Antimicrobial peptide NK-2 as an emerging therapeutic agent: a study with phospholipid membranes. Mater Today Proc. 2019;18:879-886. https://doi.org/10.1016/j.matpr.2019.06.518
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics. 2020;9(2):56. https://doi.org/10.3390/antibiotics9020056
Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10(s1):9-14. https://doi.org/10.1111/iwj.12175
Kusuma IY, Perdana MI, Vágvölgyi C, Csupor D, Takó M. Exploring the clinical applications of lemongrass essential oil: A scoping review. Pharmaceuticals. 2024;17(2):159. https://doi.org/10.3390/ph17020159
Mohammed AM, Hassan KT, Hassan OM. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int J Biol Macromol. 2023;233:123580. https://doi.org/10.1016/j.ijbiomac.2023.123580
Perdana MI, Ruamcharoen J, Panphon S, Leelakriangsak M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. LWT-Food Sci Technol. 2021;141:110934. https://doi.org/10.1016/j.lwt.2021.110934
Rahman PM, Muraleedaran K, Mujeeb VMA. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol. 2015;77:266-272. https://doi.org/10.1016/j.ijbiomac.2015.03.058
Perdana MI, Panphon S, Ruamcharoen J, Leelakriangsak M. Antimicrobial property of cassava starch/chitosan film incorporated with lemongrass essential oil and its shelf life. J Pure Appl Microbiol. 2022;16(4). https://doi.org/10.22207/JPAM.16.4.64
Ayodele O, Olanipekun EO, Olusegun SJ. Synthesis, characterization, and antimicrobial evaluation of chitosan nanoparticles complexed with Ni(II) and Cu(II) ions. Bioresour Technol Rep. 2022;20:101218. https://doi.org/10.1016/j.biteb.2022.101218
Ansari M, Khan HM, Khan AA. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol Med. 2011;3:141-146.
Soo-Hwan K, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol. 2011;39(1):77-85.
Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY, Chieng BW. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route. Chem Cent J. 2012;6(1):101. https://doi.org/10.1186/1752-153X-6-101
Chowdappa P, Gowda S, Chethana CS, Madhura S. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res. 2014;8(17):1803-1812. https://doi.org/10.5897/AJMR2013.6584
Ma L, Li K, Xia J, Chen C, Liu Y, Lang S, Yu L, Liu G. Commercial soft contact lenses engineered with zwitterionic silver nanoparticles for effectively treating microbial keratitis. J Colloid Interface Sci. 2022;610:923-933. https://doi.org/10.1016/j.jcis.2021.11.145
Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. Biomater Adv. 2022;141:213099. https://doi.org/10.1016/j.bioadv.2022.213099
Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver nanoparticles and their therapeutic applications in endodontics: A narrative review. Pharmaceutics. 2023;15(3):715. https://doi.org/10.3390/pharmaceutics15030715
Pratiwi NI, Mukimin A, Zen N, Septarina I. Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Sep Purif Technol. 2021;279:119690. https://doi.org/10.1016/j.seppur.2021.119690
Krishnan S, Zulkapli NS, Kamyab H, Taib SM, Din MFBM, Majid ZA, Chaiprapat S, Kenzo I, Ichikawa Y, Nasrullah M, Chelliapan S, Othman N. Current technologies for recovery of metals from industrial wastes: An overview. Environ Technol Inno. 2021;22:101525. https://doi.org/10.1016/j.eti.2021.101525
Mishra G, Jha R, Rao MD, Meshram A, Singh KK. Recovery of silver from waste printed circuit boards (WPCBs) through hydrometallurgical route: A review. Environ Chall. 2021;4:100073. https://doi.org/10.1016/j.envc.2021.100073
Tessema B, Gonfa G, Hailegiorgis SM, Prabhu SV, Manivannan S. Synthesis and characterization of silver nanoparticles using reducing agents of bitter leaf (Vernonia amygdalina) extract and tri-sodium citrate. Nano-Struct Nano-Objects. 2023;35:100983. https://doi.org/10.1016/j.nanoso.2023.100983
Akmaz S, Dilaver Adıgüzel E, Yasar M, Erguven O. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv Mater Sci Eng. 2013;2013. https://doi.org/10.1155/2013/690918
Mirda E, Idroes R, Khairan K, Tallei TE, Ramli M, Earlia N, Maulana A, Idroes GM, Muslem M, Jalil Z. Synthesis of chitosan-silver nanoparticle composite spheres and their antimicrobial activities. Polymers. 2021;13(22):3990. https://doi.org/10.3390/polym13223990
Zambrano C, Kerekes EB, Kotogán A, Papp T, Vágvölgyi C, Krisch J, Takó M. Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. LWT-Food Sci Technol. 2019;100:416-425. https://doi.org/10.1016/j.lwt.2018.10.044
Maqbool M, Khan T. Atomic force microscopy and XRD analysis of silver films deposited by thermal evaporation. Int J Mod Phys B. 2006;20(02):217-231. https://doi.org/10.1142/S021797920603319X
Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79-92. https://doi.org/10.1007/s00253-016-8012-8
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369. https://doi.org/10.3390/microorganisms11020369
Gomaa EZ. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol. 2017;63(1):36-43. https://doi.org/10.2323/jgam.2016.07.004
Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomed. 2014;1883-1889. https://doi.org/10.2147/IJN.S57865
Fouda MM, El-Aassar M, Al-Deyab SS. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr Polym. 2013;92(2):1012-1017. https://doi.org/10.1016/j.carbpol.2012.10.047
Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C. Chitosan-mediated synthesis of gold nanoparticles on patterned poly (dimethylsiloxane) surfaces. Biomacromolecules. 2006;7(4):1203-1209. https://doi.org/10.1021/bm060030f
Yaqoob AA, Ahmad A, Ibrahim MNM, Rashid M. Chitosan-based nanocomposites for gene delivery: Application and future perspectives. In: Bhawani SA, Karim Z, Jawaid M, editors. Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering. Woodhead Publishing Series in Biomaterials. Sawston, UK: Woodhead Publishing; 2021. p. 245-262. https://doi.org/10.1016/B978-0-12-821230-1.00001-3
Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules. 2011;16(9):7237-7248. https://doi.org/10.3390/molecules16097237
Mahae N, Chalat C, Muhamud P. Antioxidant and antimicrobial properties of chitosan-sugar complex. Int Food Res J. 2011;18(4):1543.
Hermosilla E, Díaz M, Vera J, Contreras MJ, Leal K, Salazar R, Barrientos L, Tortella G, Rubilar O. Synthesis of antimicrobial chitosan-silver nanoparticles mediated by reusable chitosan fungal beads. Int J Mol Sci. 2023;24(3):2318. https://doi.org/10.3390/ijms24032318
Hanafiah RM, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH. Green synthesis, characterisation and antibacterial activities of Strobilanthes crispus-mediated silver nanoparticles (SC-AGNPS) against selected bacteria. Artif Cells Nanomed Biotechnol. 2023;51(1):549-559. https://doi.org/10.1080/21691401.2023.2268167
Sanchooli N, Saeidi S, Barani HK, Sanchooli E. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran J Microbiol. 2018;10(6):400.
Zhangabay Z, Berillo D. Antimicrobial and antioxidant activity of AgNPs stabilized with Calendula officinalis flower extract. Results Surf Interfaces. 2023;11:100109. https://doi.org/10.1016/j.rsurfi.2023.100109
Hasibuan PAZ, Tanjung M, Gea S, Pasaribu KM, Harahap M, Perangin-Angin YA, Prayoga A, Ginting JG. Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon. 2021;7(10):e08197. https://doi.org/10.1016/j.heliyon.2021.e08197
Kulatunga D, Dananjaya S, Godahewa G, Lee J, De Zoysa M. Chitosan silver nanocomposite (CAgNC) as an antifungal agent against Candida albicans. Med Mycol. 2017;55(2):213-222. https://doi.org/10.1093/mmy/myw053
Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, Xu Q, Li X, Yu J. Characterization and antimicrobial activity of silver nanoparticles synthesized with the peel extract of mango. Materials. 2021;14(19):5878. https://doi.org/10.3390/ma14195878
Wang H, Wang M, Xu X, Gao P, Xu Z, Zhang Q, Li H, Yan A, Kao R.Y.-T, Sun H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun. 2021;12(1):3331. https://doi.org/10.1038/s41467-021-23659-y
Darmadji P, Izumimoto M. Effect of chitosan in meat preservation. Meat Sci. 1994;38(2):243-254. https://doi.org/10.1016/0309-1740(94)90114-7
Rafiullah M, Akbardeen M, Jayavanth S, Al-Rubeaan K. Chitosan - silver nanocomposites and their antimicrobial activity. J Diabetes Treat. 2018;2018(2):150. https://doi.org/10.29011/2574-7568.000050
Asadpoor M, Peeters C, Henricks PA, Varasteh S, Pieters RJ, Folkerts G, Braber S. Anti-pathogenic functions of non-digestible oligosaccharides in vitro. Nutrients. 2020;12(6):1789. https://doi.org/10.3390/nu12061789
Madureira AR, Pereira A, Pintado M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr Polym. 2015;130:429-439. https://doi.org/10.1016/j.carbpol.2015.05.030
Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352-358. https://doi.org/10.1080/21505594.2016.1247140
Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol. 2014;185:57-63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029
Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: A review. Processes. 2020;8(9):1173. https://doi.org/10.3390/pr8091173
Kulikouskaya V, Hileuskaya K, Kraskouski A, Kozerozhets I, Stepanova E, Kuzminski I, You L, Agabekov V. Chitosan-capped silver nanoparticles: a comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential. SPE Polym. 2022;3(2):77-90. https://doi.org/10.1002/pls2.10069
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhammad Iqbal Perdana, Ikhwan Yuda Kusuma, Wipsar Sunu Brams Dwandaru, Evy Yulianti, Barbara Tóth, Dezső Csupor, Miklós Takó, Csaba Vágvölgyi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.