Antimicrobial activity of chitosan-silver nanoparticles made from jewelry industry silver waste

Authors

DOI:

https://doi.org/10.2298/ABS240904034P

Keywords:

silver waste, jewelry industry, chitosan, nanoparticle synthesis, antimicrobial action

Abstract

Paper description:

  • Novel chitosan-silver nanoparticles (CS-AgNPs) have been synthesized from recycled silver.
  • CS-AgNPs were examined as antimicrobial agents based on the inhibition zone, MIC50, and microbial growth inhibition.
  • CS-AgNP effectively inhibited the growth of coli, S. aureus, and C. albicans.
  • CS-AgNP-based products may be promising in local antibacterial therapy.

Abstract: Local management of bacterial infections is challenging. The antimicrobial effect of silver has long been recognized, but its use is limited due to its expensive nature and reduced applicability in liquids. This study aimed to synthesize chitosan-silver nanoparticles (CS-AgNPs) from reusable silver waste of the jewelry industry and investigate their antimicrobial properties against pathogenic microorganisms. X-Ray diffraction (XRD) analysis was used to confirm the crystalline structure of the recycled silver, with a strong diffraction peak observed at =38.60°. Agar disk diffusion showed inhibitory effects for CS-AgNPs on the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans that depended on the concentration of AgNO3 solution used for preparation. In these tests, S. aureus was more susceptible to the treatment than E. coli and C. albicans. The CS-AgNP inhibited the growth of tested microorganisms with minimum inhibitory concentration (MIC50) values between 1.7 and 4.25 mg/mL. These findings highlight the potential of CS-AgNPs as effective antimicrobial agents. The use of waste materials in nanoparticle synthesis in this research offers a promising approach for sustainable and eco-friendly nanotechnology.

Downloads

Download data is not yet available.

References

Karmakar S, Maity P, Halder A. Antimicrobial peptide NK-2 as an emerging therapeutic agent: a study with phospholipid membranes. Mater Today Proc. 2019;18:879-886. https://doi.org/10.1016/j.matpr.2019.06.518

Smith R, Russo J, Fiegel J, Brogden N. Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics. 2020;9(2):56. https://doi.org/10.3390/antibiotics9020056

Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10(s1):9-14. https://doi.org/10.1111/iwj.12175

Kusuma IY, Perdana MI, Vágvölgyi C, Csupor D, Takó M. Exploring the clinical applications of lemongrass essential oil: A scoping review. Pharmaceuticals. 2024;17(2):159. https://doi.org/10.3390/ph17020159

Mohammed AM, Hassan KT, Hassan OM. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int J Biol Macromol. 2023;233:123580. https://doi.org/10.1016/j.ijbiomac.2023.123580

Perdana MI, Ruamcharoen J, Panphon S, Leelakriangsak M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. LWT-Food Sci Technol. 2021;141:110934. https://doi.org/10.1016/j.lwt.2021.110934

Rahman PM, Muraleedaran K, Mujeeb VMA. Applications of chitosan powder with in situ synthesized nano ZnO particles as an antimicrobial agent. Int J Biol Macromol. 2015;77:266-272. https://doi.org/10.1016/j.ijbiomac.2015.03.058

Perdana MI, Panphon S, Ruamcharoen J, Leelakriangsak M. Antimicrobial property of cassava starch/chitosan film incorporated with lemongrass essential oil and its shelf life. J Pure Appl Microbiol. 2022;16(4). https://doi.org/10.22207/JPAM.16.4.64

Ayodele O, Olanipekun EO, Olusegun SJ. Synthesis, characterization, and antimicrobial evaluation of chitosan nanoparticles complexed with Ni(II) and Cu(II) ions. Bioresour Technol Rep. 2022;20:101218. https://doi.org/10.1016/j.biteb.2022.101218

Ansari M, Khan HM, Khan AA. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol Med. 2011;3:141-146.

Soo-Hwan K, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol. 2011;39(1):77-85.

Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY, Chieng BW. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route. Chem Cent J. 2012;6(1):101. https://doi.org/10.1186/1752-153X-6-101

Chowdappa P, Gowda S, Chethana CS, Madhura S. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res. 2014;8(17):1803-1812. https://doi.org/10.5897/AJMR2013.6584

Ma L, Li K, Xia J, Chen C, Liu Y, Lang S, Yu L, Liu G. Commercial soft contact lenses engineered with zwitterionic silver nanoparticles for effectively treating microbial keratitis. J Colloid Interface Sci. 2022;610:923-933. https://doi.org/10.1016/j.jcis.2021.11.145

Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. Biomater Adv. 2022;141:213099. https://doi.org/10.1016/j.bioadv.2022.213099

Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver nanoparticles and their therapeutic applications in endodontics: A narrative review. Pharmaceutics. 2023;15(3):715. https://doi.org/10.3390/pharmaceutics15030715

Pratiwi NI, Mukimin A, Zen N, Septarina I. Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Sep Purif Technol. 2021;279:119690. https://doi.org/10.1016/j.seppur.2021.119690

Krishnan S, Zulkapli NS, Kamyab H, Taib SM, Din MFBM, Majid ZA, Chaiprapat S, Kenzo I, Ichikawa Y, Nasrullah M, Chelliapan S, Othman N. Current technologies for recovery of metals from industrial wastes: An overview. Environ Technol Inno. 2021;22:101525. https://doi.org/10.1016/j.eti.2021.101525

Mishra G, Jha R, Rao MD, Meshram A, Singh KK. Recovery of silver from waste printed circuit boards (WPCBs) through hydrometallurgical route: A review. Environ Chall. 2021;4:100073. https://doi.org/10.1016/j.envc.2021.100073

Tessema B, Gonfa G, Hailegiorgis SM, Prabhu SV, Manivannan S. Synthesis and characterization of silver nanoparticles using reducing agents of bitter leaf (Vernonia amygdalina) extract and tri-sodium citrate. Nano-Struct Nano-Objects. 2023;35:100983. https://doi.org/10.1016/j.nanoso.2023.100983

Akmaz S, Dilaver Adıgüzel E, Yasar M, Erguven O. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv Mater Sci Eng. 2013;2013. https://doi.org/10.1155/2013/690918

Mirda E, Idroes R, Khairan K, Tallei TE, Ramli M, Earlia N, Maulana A, Idroes GM, Muslem M, Jalil Z. Synthesis of chitosan-silver nanoparticle composite spheres and their antimicrobial activities. Polymers. 2021;13(22):3990. https://doi.org/10.3390/polym13223990

Zambrano C, Kerekes EB, Kotogán A, Papp T, Vágvölgyi C, Krisch J, Takó M. Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. LWT-Food Sci Technol. 2019;100:416-425. https://doi.org/10.1016/j.lwt.2018.10.044

Maqbool M, Khan T. Atomic force microscopy and XRD analysis of silver films deposited by thermal evaporation. Int J Mod Phys B. 2006;20(02):217-231. https://doi.org/10.1142/S021797920603319X

Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79-92. https://doi.org/10.1007/s00253-016-8012-8

More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):369. https://doi.org/10.3390/microorganisms11020369

Gomaa EZ. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol. 2017;63(1):36-43. https://doi.org/10.2323/jgam.2016.07.004

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomed. 2014;1883-1889. https://doi.org/10.2147/IJN.S57865

Fouda MM, El-Aassar M, Al-Deyab SS. Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydr Polym. 2013;92(2):1012-1017. https://doi.org/10.1016/j.carbpol.2012.10.047

Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C. Chitosan-mediated synthesis of gold nanoparticles on patterned poly (dimethylsiloxane) surfaces. Biomacromolecules. 2006;7(4):1203-1209. https://doi.org/10.1021/bm060030f

Yaqoob AA, Ahmad A, Ibrahim MNM, Rashid M. Chitosan-based nanocomposites for gene delivery: Application and future perspectives. In: Bhawani SA, Karim Z, Jawaid M, editors. Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering. Woodhead Publishing Series in Biomaterials. Sawston, UK: Woodhead Publishing; 2021. p. 245-262. https://doi.org/10.1016/B978-0-12-821230-1.00001-3

Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules. 2011;16(9):7237-7248. https://doi.org/10.3390/molecules16097237

Mahae N, Chalat C, Muhamud P. Antioxidant and antimicrobial properties of chitosan-sugar complex. Int Food Res J. 2011;18(4):1543.

Hermosilla E, Díaz M, Vera J, Contreras MJ, Leal K, Salazar R, Barrientos L, Tortella G, Rubilar O. Synthesis of antimicrobial chitosan-silver nanoparticles mediated by reusable chitosan fungal beads. Int J Mol Sci. 2023;24(3):2318. https://doi.org/10.3390/ijms24032318

Hanafiah RM, Abd Ghafar SA, Lim V, Musa SNA, Yakop F, Hairil Anuar AH. Green synthesis, characterisation and antibacterial activities of Strobilanthes crispus-mediated silver nanoparticles (SC-AGNPS) against selected bacteria. Artif Cells Nanomed Biotechnol. 2023;51(1):549-559. https://doi.org/10.1080/21691401.2023.2268167

Sanchooli N, Saeidi S, Barani HK, Sanchooli E. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran J Microbiol. 2018;10(6):400.

Zhangabay Z, Berillo D. Antimicrobial and antioxidant activity of AgNPs stabilized with Calendula officinalis flower extract. Results Surf Interfaces. 2023;11:100109. https://doi.org/10.1016/j.rsurfi.2023.100109

Hasibuan PAZ, Tanjung M, Gea S, Pasaribu KM, Harahap M, Perangin-Angin YA, Prayoga A, Ginting JG. Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material. Heliyon. 2021;7(10):e08197. https://doi.org/10.1016/j.heliyon.2021.e08197

Kulatunga D, Dananjaya S, Godahewa G, Lee J, De Zoysa M. Chitosan silver nanocomposite (CAgNC) as an antifungal agent against Candida albicans. Med Mycol. 2017;55(2):213-222. https://doi.org/10.1093/mmy/myw053

Xing Y, Liao X, Liu X, Li W, Huang R, Tang J, Xu Q, Li X, Yu J. Characterization and antimicrobial activity of silver nanoparticles synthesized with the peel extract of mango. Materials. 2021;14(19):5878. https://doi.org/10.3390/ma14195878

Wang H, Wang M, Xu X, Gao P, Xu Z, Zhang Q, Li H, Yan A, Kao R.Y.-T, Sun H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat Commun. 2021;12(1):3331. https://doi.org/10.1038/s41467-021-23659-y

Darmadji P, Izumimoto M. Effect of chitosan in meat preservation. Meat Sci. 1994;38(2):243-254. https://doi.org/10.1016/0309-1740(94)90114-7

Rafiullah M, Akbardeen M, Jayavanth S, Al-Rubeaan K. Chitosan - silver nanocomposites and their antimicrobial activity. J Diabetes Treat. 2018;2018(2):150. https://doi.org/10.29011/2574-7568.000050

Asadpoor M, Peeters C, Henricks PA, Varasteh S, Pieters RJ, Folkerts G, Braber S. Anti-pathogenic functions of non-digestible oligosaccharides in vitro. Nutrients. 2020;12(6):1789. https://doi.org/10.3390/nu12061789

Madureira AR, Pereira A, Pintado M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr Polym. 2015;130:429-439. https://doi.org/10.1016/j.carbpol.2015.05.030

Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352-358. https://doi.org/10.1080/21505594.2016.1247140

Younes I, Sellimi S, Rinaudo M, Jellouli K, Nasri M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol. 2014;185:57-63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029

Chandrasekaran M, Kim KD, Chun SC. Antibacterial activity of chitosan nanoparticles: A review. Processes. 2020;8(9):1173. https://doi.org/10.3390/pr8091173

Kulikouskaya V, Hileuskaya K, Kraskouski A, Kozerozhets I, Stepanova E, Kuzminski I, You L, Agabekov V. Chitosan-capped silver nanoparticles: a comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergetic antibacterial potential. SPE Polym. 2022;3(2):77-90. https://doi.org/10.1002/pls2.10069

Downloads

Published

2024-12-20

How to Cite

1.
Perdana MI, Kusuma IY, Sunu Brams Dwandaru W, Yulianti E, Tóth B, Csupor D, Takó M, Vágvölgyi C. Antimicrobial activity of chitosan-silver nanoparticles made from jewelry industry silver waste. Arch Biol Sci [Internet]. 2024Dec.20 [cited 2024Dec.21];76(4):445-53. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/10273

Issue

Section

Articles