Inhibiting METTL3-ATG5 axis-mediated harmful autophagy in macrophages could help reduce airway epithelial inflammation and remodeling in COPD

Authors

DOI:

https://doi.org/10.2298/ABS240928036C

Keywords:

chronic obstructive pulmonary disease (COPD), methyltransferase-like 3 (METTL3), autophagy-related protein 5 (ATG5), damaging autophagy

Abstract

Pape description:

  • Methyltransferase-like 3 (METTL3) and autophagy-related protein 5 (ATG5) are increased in chronic obstructive pulmonary disease (COPD).
  • Mice exposed to cigarette smoke were used to establish the in vivo COPD model; mouse mononuclear macrophages RAW264.7 exposed to cigarette smoke extract served as the in vitro Knockdown of METTL3 was used to investigate its regulatory mechanisms.
  • In COPD, the inhibition of METTL3-ATG5 axis-mediated macrophage detrimental autophagy alleviated bronchial epithelial cell inflammation and reduced airway remodeling.
  • Our work provides insight into molecular mechanisms for intervention and treatment of COPD.

Abstract: Cigarette smoke exposure leads to chronic obstructive pulmonary disease (COPD). We investigated the role and underlying mechanisms of methyltransferase-like 3 (METTL3) and autophagy-related protein 5 (ATG5) in the progression of COPD. In a COPD mouse model exposed to cigarette smoke, lung tissues showed increased levels of METTL3, p-p65/p65, autophagy markers (LC3 and ATG5), inflammatory factors (interleukin-6, IL-8, and TNF-α), and airway remodeling markers (N-cadherin, α-SMA, and Tn-C), while p62 and E-cadherin levels were decreased. Expression of METTL3 and ATG5 was positively correlated. These findings are consistent with observations in RAW264.7 mouse mononuclear macrophages exposed to cigarette smoke extract (CSE). CSE inhibited cell viability while promoting autophagy. METTL3 knockdown counteracted CSE effects, and ATG5 overexpression reversed METTL3 knockdown outcomes. Methylated RNA immunoprecipitation-qPCR showed that METTL3 knockdown reduced m6A, and the actinomycin D assay suggested that METTL3 knockdown reduced ATG5 mRNA levels and lowered ATG5 mRNA stability. METTL3-knockdown RAW264.7 reduced the inflammation and airway remodeling markers in the co-cultured mouse bronchial epithelial cells. In conclusion, inhibition of the METTL3-ATG5 axis-mediated macrophage detrimental autophagy in COPD could alleviate bronchial epithelial cell inflammation and reduce airway remodeling.

Downloads

Download data is not yet available.

References

Gordon A, Young M, Bihler E, Cheema T. COPD Maintenance Pharmacotherapy. Crit Care Nurs Q. 2021;44(1):19-25. https://doi.org/10.1097/cnq.0000000000000336

Hogea SP, Tudorache E, Fildan AP, Fira-Mladinescu O, Marc M, Oancea C. Risk factors of chronic obstructive pulmonary disease exacerbations. Clin Respir J. 2020;14(3):183-97. https://doi.org/10.1111/crj.13129

Xie W, Zheng W, Liu M, Qin Q, Zhao Y, Cheng Z, Guo F. BRF1 ameliorates LPS-induced inflammation through autophagy crosstalking with MAPK/ERK signaling. Genes Dis. 2018;5(3):226-34. https://doi.org/10.1016/j.gendis.2018.04.004

Bodas M, Patel N, Silverberg D, Walworth K, Vij N. Master Autophagy Regulator Transcription Factor EB Regulates Cigarette Smoke-Induced Autophagy Impairment and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis. Antioxid Redox Signal. 2017;27(3):150-67. https://doi.org/10.1089/ars.2016.6842

Wu Y, Li D, Wang Y, Chen K, Yang K, Huang X, Zhang Y, Wu M. Pseudomonas aeruginosa promotes autophagy to suppress macrophage-mediated bacterial eradication. Int Immunopharmacol. 2016;38:214-22. https://doi.org/10.1016/j.intimp.2016.04.044

Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T, Cheng C, Wang P, Yang Y, Wu M, Wang S, Zhang J, Liu Q. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci. 2022;18(2):661-74. https://doi.org/10.7150/ijbs.65861

Kono Y, Colley T, To M, Papaioannou AI, Mercado N, Baker JR, To Y, Abe S, Haruki K, Ito K, Barnes PJ. Cigarette smoke-induced impairment of autophagy in macrophages increases galectin-8 and inflammation. Sci Rep. 2021;11(1):335. https://doi.org/10.1038/s41598-020-79848-0

Xu SW, Zhang YJ, Liu WM, Zhang XF, Wang Y, Xiang SY, Su JC, Liu ZB. Cigarette smoke extract-induced inflammatory response via inhibition of the TFEB-mediated autophagy in NR8383 cells. Exp Lung Res. 2023;49(1):39-48. https://doi.org/10.1080/01902148.2022.2164674

Wang L, Yu Q, Xiao J, Chen Q, Fang M, Zhao H. Cigarette Smoke Extract-Treated Mouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m(6)A Methylation. Immune Netw. 2024;24(2):e3. https://doi.org/10.4110/in.2024.24.e3

Wu YF, Li ZY, Dong LL, Li WJ, Wu YP, Wang J, Chen HP, Liu HW, Li M, Jin CL, Huang HQ, Ying SM, Li W, Shen HH, Chen ZH. Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy. 2020;16(3):435-50. https://doi.org/10.1080/15548627.2019.1628536

Zheng W, Xie W, Yin D, Luo R, Liu M, Guo F. ATG5 and ATG7 induced autophagy interplays with UPR via PERK signaling. Cell Commun Signal. 2019;17(1):42. https://doi.org/10.1186/s12964-019-0353-3

Zhou L, Haiyilati A, Li J, Li X, Gao L, Cao H, Wang Y, Zheng SJ. Gga-miR-30c-5p Suppresses Avian Reovirus (ARV) Replication by Inhibition of ARV-Induced Autophagy via Targeting ATG5. J Virol. 2022;96(14):e0075922. https://doi.org/10.1128/jvi.00759-22

Qiang L, Yang S, Cui YH, He YY. Keratinocyte autophagy enables the activation of keratinocytes and fibroblastsand facilitates wound healing. Autophagy. 2021;17(9):2128-43. https://doi.org/10.1080/15548627.2020.1816342

Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z, Deng Y. The role of mRNA m(6)A methylation in the nervous system. Cell Biosci. 2019;9:66. https://doi.org/10.1186/s13578-019-0330-y

Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, Zhang Y, Fang JY, Chen H, Hong J. m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 2020;19(1):72. https://doi.org/10.1186/s12943-020-01190-w

Xia H, Wu Y, Zhao J, Cheng C, Lin J, Yang Y, Lu L, Xiang Q, Bian T, Liu Q. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ. 2023;30(5):1293-304. https://doi.org/10.1038/s41418-023-01138-9

Chai RC, Chang YZ, Chang X, Pang B, An SY, Zhang KN, Chang YH, Jiang T, Wang YZ. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m(6)A modification to activate NF-κB and promote the malignant progression of glioma. J Hematol Oncol. 2021;14(1):109. https://doi.org/10.1186/s13045-021-01124-z

Zhang Y, Wang L, Yan F, Yang M, Gao H, Zeng Y. Mettl3 Mediated m6A Methylation Involved in Epithelial-Mesenchymal Transition by Targeting SOCS3/STAT3/SNAI1 in Cigarette Smoking-Induced COPD. Int J Chron Obstruct Pulmon Dis. 2023;18:1007-17. https://doi.org/10.2147/COPD.S398289

Chen H, Xiang Y, Yin Y, Peng J, Peng D, Li D, Kitazawa R, Tang Y, Yang J. The m6A methyltransferase METTL3 regulates autophagy and sensitivity to cisplatin by targeting ATG5 in seminoma. Transl Androl Urol. 2021;10(4):1711-22. https://doi.org/10.21037/tau-20-1411

Wang L, Chen Q, Yu Q, Xiao J, Zhao H. Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease. Int Immunopharmacol. 2021;96:107700. https://doi.org/10.1016/j.intimp.2021.107700

He S, Tian R, Zhang X, Yao Q, Chen Q, Liu B, Liao L, Gong Y, Yang H, Wang D. PPARγ inhibits small airway remodeling through mediating the polarization homeostasis of alveolar macrophages in COPD. Clin Immunol. 2023;250:109293. https://doi.org/10.1016/j.clim.2023.109293

Liu H, Wang XX, Chen P. Angiopoietin-like 4 knockdown attenuates cigarette smoke extract-induced oxidative stress and apoptosis in lung bronchial epithelial cells by inhibiting NADPH oxidase. Allergol Immunopathol (Madr). 2022;50(5):47-56. https://doi.org/10.15586/aei.v50i5.637

Chen H, Yu Y, Yang M, Huang H, Ma S, Hu J, Xi Z, Guo H, Yao G, Yang L, Huang X, Zhang F, Tan G, Wu H, Zheng W, Li L. YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci. 2022;12(1):19. https://doi.org/10.1186/s13578-022-00759-w

Xie B, Dai Z, Jiang C, Gao X, Yang S, Peng M, Chen Q, Chen X. ZC3H13 promotes ITGA6 m(6)A modification for chronic obstructive pulmonary disease progression. Cell Signal. 2024;120:111190. https://doi.org/10.1016/j.cellsig.2024.111190

Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X, Jiang G. CircPTPRA blocks the recognition of RNA N(6)-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 2021;20(1):68. https://doi.org/10.1186/s12943-021-01359-x

Wang F, Bai J, Zhang X, Wang D, Zhang X, Xue J, Chen H, Wang S, Chi B, Li J, Ma X. METTL3/YTHDF2 m6A axis mediates the progression of diabetic nephropathy through epigenetically suppressing PINK1 and mitophagy. J Diabetes Investig. 2024;15(3):288-99. https://doi.org/10.1111/jdi.14113

Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, Wong CC, Ng IO, Wong CM. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67(6):2254-70. https://doi.org/10.1002/hep.29683

Huang X, Lv D, Yang X, Li M, Zhang H. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med. 2020;24(21):12706-15. https://doi.org/10.1111/jcmm.15848

Yoshida M, Minagawa S, Araya J, Sakamoto T, Hara H, Tsubouchi K, Hosaka Y, Ichikawa A, Saito N, Kadota T, Sato N, Kurita Y, Kobayashi K, Ito S, Utsumi H, Wakui H, Numata T, Kaneko Y, Mori S, Asano H, Yamashita M, Odaka M, Morikawa T, Nakayama K, Iwamoto T, Imai H, Kuwano K. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis. Nat Commun. 2019;10(1):3145. https://doi.org/10.1038/s41467-019-10991-7

Li C, Chen F, Lin L, Li J, Zheng Y, Chen Q. CSE triggers ferroptosis via SIRT4-mediated GNPAT deacetylation in the pathogenesis of COPD. Respir Res. 2023;24(1):301. https://doi.org/10.1186/s12931-023-02613-0

Li SH, Li QP, Chen WJ, Zhong YY, Sun J, Wu JF, Cao YX, Dong JC. Psoralen attenuates cigarette smoke extract-induced inflammation by modulating CD8(+) T lymphocyte recruitment and chemokines via the JAK2/STAT1 signaling pathway. Heliyon. 2024;10(12):e32351. https://doi.org/10.1016/j.heliyon.2024.e32351

Eom JE, Kim GD, Kim YI, Lim KM, Song JH, Kim Y, Song HJ, Shin DU, Lim EY, Kim HJ, Kim SH, Lee DS, Lee SY, Shin HS. Bulb of Lilium longiflorum Thunb Extract Fermented with Lactobacillus acidophilus Reduces Inflammation in a Chronic Obstructive Pulmonary Disease Model. J Microbiol Biotechnol. 2023;33(5):634-43. https://doi.org/10.4014/jmb.2301.01022

Pei C, Wang X, Lin Y, Fang L, Meng S. Inhibition of Galectin-3 Alleviates Cigarette Smoke Extract-Induced Autophagy and Dysfunction in Endothelial Progenitor Cells. Oxid Med Cell Longev. 2019;2019:7252943. https://doi.org/10.1155/2019/7252943

Zhang J, Zhao Y, Hou T, Zeng H, Kalambhe D, Wang B, Shen X, Huang Y. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J Control Release. 2020;320:363-80. https://doi.org/10.1016/j.jconrel.2020.01.047

Liu J, Zhang Z, Yang Y, Di T, Wu Y, Bian T. NCOA4-Mediated Ferroptosis in Bronchial Epithelial Cells Promotes Macrophage M2 Polarization in COPD Emphysema. Int J Chron Obstruct Pulmon Dis. 2022;17:667-81. https://doi.org/10.2147/COPD.S354896

Wang C, Meng Y, Zhao J, Ma J, Zhao Y, Gao R, Liu W, Zhou X. Deubiquitinase USP13 regulates glycolytic reprogramming and progression in osteosarcoma by stabilizing METTL3/m(6)A/ATG5 axis. Int J Biol Sci. 2023;19(7):2289-303. https://doi.org/10.7150/ijbs.82081

Wen L, Sun W, Xia D, Wang Y, Li J, Yang S. The m6A methyltransferase METTL3 promotes LPS-induced microglia inflammation through TRAF6/NF-κB pathway. Neuroreport. 2022;33(6):243-51. https://doi.org/10.1097/wnr.0000000000001550

Hu T, Xu L, Jiang M, Zhang F, Li Q, Li Z, Wu C, Ding J, Li F, Wang J. N6-methyladenosine-methylomic landscape of lung tissues of mice with chronic obstructive pulmonary disease. Front Immunol. 2023;14:1137195. https://doi.org/10.3389/fimmu.2023.1137195

Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, Webster NA, Andrews B, Fosbeary R, Guest P, Irigoyen N, Eleftheriou M, Gozdecka M, Dias JML, Bannister AJ, Vick B, Jeremias I, Vassiliou GS, Rausch O, Tzelepis K, Kouzarides T. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597-601. https://doi.org/10.1038/s41586-021-03536-w

Kharaziha P, Panaretakis T. Dynamics of Atg5-Atg12-Atg16L1 Aggregation and Deaggregation. Methods Enzymol. 2017;587:247-55. https://doi.org/10.1016/bs.mie.2016.09.059

Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells. 2022;11(3). https://doi.org/10.3390/cells11030441

Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W, Ye L. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 2018;415:11-9. https://doi.org/10.1016/j.canlet.2017.11.018

Downloads

Published

2024-12-20

How to Cite

1.
Chen G, Xia Z, Zeng X, Liu H. Inhibiting METTL3-ATG5 axis-mediated harmful autophagy in macrophages could help reduce airway epithelial inflammation and remodeling in COPD. Arch Biol Sci [Internet]. 2024Dec.20 [cited 2025Jan.21];76(4):465-76. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/10361

Issue

Section

Articles