Evaluation of the cytogenetic and genotoxic effects of an abamectin-based pesticide on Allium cepa roots

Authors

DOI:

https://doi.org/10.2298/ABS241025038I

Keywords:

abamectin, toxicity, chromosomal aberration, DNA damage, Allium cepa

Abstract

Paper description:

  • Abamectin, with insecticidal, anthelmintic, and acaricidal activities, one of the most intensively used pesticides, has toxic effects on some non-target organisms, raising concerns regarding its safety.
  • Toxicity of abamectin, the active ingredient of commercial pesticide formulation Alopec® EC, was investigated by cytogenetic and comet assays in Allium cepa root tips.
  • Abamectin was found to be cytogenotoxic for cepa.
  • To protect public health and the environment, abamectin should be carefully regulated, with particular attention given to its concentration, especially in agroecosystems.

Abstract: Abamectin, a widely used pesticide with insecticidal, anthelmintic, and acaricidal properties, has raised safety concerns due to its toxic effects on certain non-target organisms. The toxicity of abamectin, the active ingredient in the commercial pesticide formulation Alopec® EC, was evaluated using cytogenetic and comet assays on Allium cepa root tips. Mitotic index (MI) and phase index (PI) values were used for cytotoxicity assessment. Chromosomal aberration (CA) frequencies in the dividing cells and comet data were used for genotoxicity assessment. The root growth test showed a significant concentration-based decline in root growth after abamectin exposure, with a median effective concentration (EC50) of 2.50 mg/L. Following 96-hour exposure to three concentrations of abamectin (1.25, 2.50, and 5.00 mg/L), cytogenetic and comet analyses indicated a significant concentration- and time-dependent decrease in the MI, alongside an increase in DNA damage. Additionally, there was a significant concentration-dependent rise in the total frequency of CAs. These findings show that abamectin is a pesticide with lethal effects on A. cepa root tip meristematic cells, even at lower concentrations, over prolonged exposure times, with CA-forming and DNA-damaging effects, and that it is highly cytotoxic and genotoxic.

Downloads

Download data is not yet available.

References

Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6(2):48–60. https://doi.org/10.1002/fes3.108

Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1(11):1–16. https://doi.org/10.1007/s42452-019-1485-1

Sari F. Lethal and sublethal effects of the pyrethroid insecticide tau-fluvalinate on the non-target organism Gammarus roeseli: A study of acute toxicity, genotoxicity and locomotor activity. Arch Biol Sci. 2022;74(4):347–58. https://doi.org/10.1007/s42452-019-1485-1

Pimentel D, Levitan L. Pesticides: Amounts applied and amounts reaching pests. Bioscience. 1986;36(2):86–91. https://doi.org/10.2307/1310108

Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 2021;18(3):1112. https://doi.org/10.3390/ijerph18031112

Akashe MM, Pawade UV, Nikam AV. Classification of pesticides: A review. Int J Res Ayurveda Pharm. 2018;9(4):144–50. https://doi.org/10.7897/2277-4343.094131

İli P. Tau-fluvalinat içerikli bir insektisitin sitotoksik ve genotoksik etkilerinin Allium testi kullanılarak incelenmesi. Iğdır Üniv Fen Bil Enst Der. 2024;14(1):75–86. https://doi.org/10.21597/jist.1326695

Bai SH, Ogbourne SM. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere. 2016;154:204–14. https://doi.org/10.1016/j.chemosphere.2016.03.113

Salman M, Abbas RZ, Mehmood K, Hussain R, Shah S, Faheem M, Zaheer T, Abbas A, Morales B, Aneva I, Martínez JL. Assessment of avermectins-induced toxicity in animals. Pharmaceuticals. 2022;15(3):332. https://doi.org/10.3390/ph15030332

Sheikh N, Patowary H, Laskar RA. Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Mol Cell Toxicol. 2020;16(3):291–9. https://doi.org/10.1007/s13273-020-00077-7

Liang Y, Dong B, Pang N, Hu J. ROS generation and DNA damage contribute to abamectin-induced cytotoxicity in mouse macrophage cells. Chemosphere. 2019;234:328–37. https://doi.org/10.1007/s13273-020-00077-7

Kalefetoğlu Macar T. Investigation of cytotoxicity and genotoxicity of abamectin pesticide in Allium cepa L. Environ Sci Pollut Res. 2021;28(2):2391–9. https://doi.org/10.1007/s11356-020-10708-0

Camilo-Cotrim CF, Bailão EFLC, Ondei LS, Carneiro FM, Almeida LM. What can the Allium cepa test say about pesticide safety? A review. Environ Sci Pollut Res. 2022;29(32):48088–104. https://doi.org/10.1007/s11356-020-10708-0

Dhananjayan V, Jayanthi P, Ravichandran B, Jayakumar R. Biomonitoring and biomarkers of pesticide exposure and human health risk assessment. In: Singh P, Singh S, Sillanpää M, editors. Pesticides in the Natural Environment. Elsevier; 2022. p. 563–84. https://doi.org/10.1016/B978-0-323-90489-6.00021-5

Azizullah A, Häder DP. A comparison of commonly used and commercially available bioassays for aquatic ecosystems. In: Häder D-P, Erzinger GS, editors. Bioassays: Advanced Methods and Applications. Amsterdam: Elsevier; 2018. p. 347–68. https://doi.org/10.1016/B978-0-12-811861-0.00017-6

Sari A, Sari F. A comparative examination of acute toxicities of three disazo dyes to freshwater macroinvertebrates Gammarus roeseli (Crustacea: Amphipoda) and Chironomus riparius (Insecta: Diptera). Chem Ecol. 2021;37(8):683–703. https://doi.org/10.1080/02757540.2021.1974008

Ozdemir A, Duran M, Akyildiz GK, Sen A. EROD and metallothionein in Limnodrilus profundicola (Oligochaeta: Tubificidae) as an indicator of pollution exposure in the Curuksu stream of Menderes river, Denizli–Turkey. Desalination Water Treat. 2011;26(1–3):98–103. https://doi.org/10.5004/dwt.2011.2116

Sari A. Assessment of pollution variability across the central part of the Büyük Menderes River (Turkey) using water physicochemical parameters and biomarker responses in the non-biting midge Chironomus riparius (Diptera: Chironomidae). Chem Ecol. 2023;39(1):59–77. https://doi.org/10.1080/02757540.2022.2147515

Vasconcelos AM, Daam MA, dos Santos LRA, Sanches ALM, Araújo CVM, Espíndola ELG. Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology. 2016;25(3):500–9. https://doi.org/10.1007/s10646-015-1608-4

Wang Y, Zhu YC, Li W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol Environ Saf. 2020;190:110100. https://doi.org/10.1016/j.ecoenv.2019.110100

Fiskesjö G. The Allium test as a standard in environmental monitoring. Hereditas. 1985;102(1):99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

Leme DM, Marin-Morales MA. Allium cepa test in environmental monitoring: A review on its application. Mutat Res Rev Mutat Res. 2009;682(1):71–81. https://doi.org/10.1016/j.mrrev.2009.06.002

Bonciu E, Firbas P, Fontanetti CS, Wusheng J, Karaismailoğlu MC, Liu D, Menicucci F, Pesnya DS, Popescu A, Romanovsky AV., Schiff S, Ślusarczyk J, de Souza CP, Srivastava A, Sutan A, Papini A. An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia. 2018;71(3):191–209. https://doi.org/10.1080/00087114.2018.1503496

Fiskesjö G. The Allium test — an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res Fundam Mol Mech Mutagen. 1988;197(2):243–60. https://doi.org/10.1016/0027-5107(88)90096-6

Cabuga CC, Joy J, Abelada Z, Rose R, Apostado Q, Joy B, Hernando H, Erick J, Lador C, Lloyd O, Obenza P, James C, Presilda R, Havana HC. Allium cepa test: An evaluation of genotoxicity. Proc Int Acad Ecol Environ Sci. 2017;7(1):12–9.

Constantin MJ, Owens ET. Introduction and perspectives of plant genetic and cytogenetic assays a report of the U.S. environmental protection agency Gene-Tox program. Mutat Res Rev Genet Toxicol. 1982;99(1):1–12. https://doi.org/10.1016/0165-1110(82)90027-6

Kihlman BA. Root tips for studying the effects of chemicals on chromosomes. In: Hollaender A, editor. Chemical Mutagens. Boston, MA: Springer; 1971. p. 489–514. https://doi.org/10.1007/978-1-4615-8969-3_8

Sharma CBSR. Plant meristems as monitors of genetic toxicity of environmental chemicals. Curr Sci. 1983;52(21):1000–2.

Rashid F, Singh D, Attri S, Kaur P, Kaur H, Mohana P, Quadar J, Vig AP, Bhatia A, Singh B, Walia H, Arora S. Modulation of atrazine-induced chromosomal aberrations and cyclin-dependent kinases by aqueous extract of Roylea cinerea (D.Don) Baillon leaves in Allium cepa. Sci Rep. 2022;12(1):12570. https://doi.org/10.1038/s41598-022-16813-z

Liman R, Ali MM, Ciğerci İH, İstifli ES, Sarıkurkcu C. Cytotoxic and genotoxic evaluation of copper oxychloride through Allium test and molecular docking studies. Environ Sci Pollut Res. 2021;28(33):44998–5008. https://doi.org/10.1007/s11356-021-13897-4

Akbaba GB. Toxicity assessment of zinc sulfate: A commonly used compound. Toxicol Ind Health. 2020;36(10):779–87. https://doi.org/10.1177/0748233720944771

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki YF. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J

Nadin SB, Vargas-Roig LM, Ciocca DR. A silver staining method for single-cell gel assay. J Histochem Cytochem. 2001;49(9):1183–6. https://doi.org/10.1177/002215540104900912

Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61. https://doi.org/10.1385/MB:26:3:249

Ping KY, Darah I, Yusuf UK, Yeng C, Sasidharan S. Genotoxicity of Euphorbia hirta: An Allium cepa assay. Molecules. 2012;17(7):7782–91. https://doi.org/10.3390/molecules17077782

Karaismailoglu MC. Investigation of the potential toxic effects of prometryne herbicide on Allium cepa root tip cells with mitotic activity, chromosome aberration, micronucleus frequency, nuclear DNA amount and comet assay. Caryologia. 2015;68(4):323–9. https://doi.org/10.1080/00087114.2015.1109927

Smaka-Kincl V, Stegnar P, Lovka M, Toman MJ. The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutat Res Genet Toxicol. 1996;368(3–4):171–9. https://doi.org/10.1016/S0165-1218(96)90059-2

Ahmed FAW. Cytotoxic and genotoxic potency screening of WIDE-SPEC pesticide on Allium cepa L. root meristem cells. J Nat Sci Res. 2014;4(24):100–8.

Ciğerci İH, Liman R, İstifli ES, Akyıl D, Özkara A, Bonciu E, Colă F. Cyto-genotoxic and behavioral effects of flubendiamide in Allium cepa root cells, Drosophila melanogaster and molecular docking studies. Int J Mol Sci. 2023;24(2):1565. https://doi.org/10.3390/ijms24021565

Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI. Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ Sci Pollut Res. 2015;22(21):17041–52. https://doi.org/10.1007/s11356-015-4927-3

Zhu S, Zhou J, Zhou Z, Zhu Q. Abamectin induces apoptosis and autophagy by inhibiting reactive oxygen species-mediated PI3K/AKT signaling in MGC803 cells. J Biochem Mol Toxicol. 2019;33(7):e22336. https://doi.org/10.1002/jbt.22336

Mesi A, Kopliku D. Cytotoxic and genotoxic potency screening of two pesticides on Allium cepa L. Procedia Technol. 2013;8:19–26. https://doi.org/10.1016/j.protcy.2013.11.005

Karaismailoglu MC. Assessments on the potential genotoxic effects of fipronil insecticide on Allium cepa somatic cells. Caryologia. 2017;70(4):378–84. https://doi.org/10.1080/00087114.2017.1371992

Wijeyaratne WMDN, Wickramasinghe PGMU. Chromosomal abnormalities in Allium cepa induced by treated textile effluents: Spatial and temporal variations. J Toxicol. 2020;2020:8814196. https://doi.org/10.1155/2020/8814196

Kwankua W, Sengsai S, Kuleung C, Euawong N. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor. Ecotoxicol Environ Saf. 2010;73(5):949–54. https://doi.org/10.1016/j.ecoenv.2010.04.001

Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089–98. https://doi.org/10.1080/17425255.2017.1375097

de Souza CP, Guedes T de A, Fontanetti CS. Evaluation of herbicides action on plant bioindicators by genetic biomarkers: a review. Environ Monit Assess. 2016;188(12):694. https://doi.org/10.1007/s10661-016-5702-8

Seth CS, Misra V, Chauhan LKS, Singh RR. Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicol Environ Saf. 2008;71(3):711–6. https://doi.org/10.1016/j.ecoenv.2008.02.003

Mandal A, Giri S, Giri A. Assessment of toxicity, genotoxicity and oxidative stress in Fejervarya limnocharis exposed to tributyltin. Environ Sci Pollut Res. 2024;31(10):14938–48. https://doi.org/10.1007/s11356-024-32220-5

Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep. 2023;50(6):5465–79. https://doi.org/10.1007/s11033-023-08424-2

Liman R, Ciğerci IH, Öztürk NS. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol. 2015;118:38–42. https://doi.org/10.1016/j.pestbp.2014.11.007

Liman R, Ciğerci IH, Akyıl D, Eren Y, Konuk M. Determination of genotoxicity of Fenaminosulf by Allium and Comet tests. Pestic Biochem Physiol. 2011;99(1):61–4. https://doi.org/10.1016/j.pestbp.2010.10.006

Cossi PF, Herbert LT, Yusseppone MS, Pérez AF, Kristoff G. Toxicity evaluation of the active ingredient acetamiprid and a commercial formulation (Assail® 70) on the non-target gastropod Biomphalaria straminea (Mollusca: Planorbidae). Ecotoxicol Environ Saf. 2020;192:110248. https://doi.org/10.1016/j.ecoenv.2020.110248

Downloads

Published

2024-12-20

How to Cite

1.
Ili P, Sari F. Evaluation of the cytogenetic and genotoxic effects of an abamectin-based pesticide on Allium cepa roots. Arch Biol Sci [Internet]. 2024Dec.20 [cited 2025Jan.21];76(4):477-90. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/10445

Issue

Section

Articles