THE EFFECTS OF DOUGLAS FIR MONOCULTURE ON STAND CHARACTERISTICS IN A ZONE OF MONTANE BEECH FOREST
Abstract
The right choice of tree species to form forest cultures is of paramount importance to the preservation of the diversity, fertility and ecological stability of forest ecosystems. To that end, we examined the effect of a 40-year-long cultivation of Douglas fir (Pseudotsuga menziesii (Mirb) Franco) on the floristic composition, characteristics of the forest floor, physical and chemical properties of the soil and the intensity of organic matter decomposition in a beech forest in western Serbia (Mt. Maljen). It was found that the cultivation of Douglas fir caused a reduction in biodiversity, changes in the chemical properties of the soil, that were most pronounced in the surface layers (0-10 cm), and a slowing down in the metabolism of the beech stand. The absence of many plant species characteristic to natural beech forests was observed in the Douglas fir plantation, these were reflected in the detected changes in the chemical properties of the soil, such as lower substitutional acidity (p<0.05), depletion of the adsorption of basis in the cation complex (p<0.001) and lower amounts of C, N, P (p<0.001) and K (p<0.01) in relation to the beech stand (control). No differences were found in soil moisture and active acidity levels. The higher value of the C/N ratio of the Douglas fir litter (p<0.001) provided proof for its lower decomposition rate compared to beech litter (p<0.05). Over time, all these changes could lead to further acidification and degradation of the soil and a reduction in this ecosystem’s productivity.
Key words: beech; Douglas fir monoculture; degraded habitat; soil characteristics; biodiversity
Received: September 11, 2015; Revised: December 2, 2015; Accepted: December 3, 2015; Published online: April 3, 2016
How to cite this article: Kostić O, Jarić S, Gajić G, Pavlović D, Marković M, Mitrović M, Pavlović P. The effects of Douglas fir monoculture on stand characteristics in a zone of Montane beech forest. Arch Biol Sci. 2016;68(4):753-66.
Downloads
References
Augusto L, Ranger J, Binkley D, Rothe A. Impact of several common tree species of European temperate forests on soil fertility. Ann Forest Sci. 2002;59: 233-53.
Mareschal L, Bonnaud P, Turpault MP, Ranger J. Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. Eur J Soil Sci. 2010;61:14-23.
Moukoumi J, Munier-Lamy C, Berthelin J, Ranger J. Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in temperate topsoil. Ann Forest Sci. 2006;63:763-71.
Kostić O, Mitrović M, Jarić S, Djurdjević L, Gajić G, Pavlović M, Pavlović P. The effects of forty years of spruce cultivation in a zone of beech forest on Mt. Maljen (Serbia). Arch Biol Sci. 2012;64(3):1181-95.
Augusto L, Dupouey JL, Ranger J. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann Forest Sci. 2003;60:823-31.
Bagherzadeh A, Brumme R, Beese F. Impact of tree species on nutrient stocks in the forest floors of a temperate forest ecosystem. Pakistan Journal of Biological Sciences. 2008;11(9): 1258-62.
Berg B, McClaugherty C. Plant litter: Decomposition, Humus Formation, Carbon Sequestration. 2 nd ed. Berlin, Heidelberg: Springer-Verlag; 2008.
Antisari LV, Falsone G, Carbone S, Marinari S, Vianello G. Douglas-fir reforestation in North Apennine (Ital): Performance on soil carbon sequestration, nutrient stock and microbal activity. Appl Soil Ecol. 2015;86:82-90.
Berger TW, Berger P. Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles. Plant Soil. 2012;385:349-69.
Binkley D, Valentine D. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecol Manag. 1991;40:13-25.
Van Oijen D, Feijen M, Hommel P, den Ouden J, de Waal R. Effects of tree species composition on within-forest distribution of understorey species. Appl Veg Sci. 2005;8:155-66.
Carnus J-M, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, Ohara K, Walters B. Planted forests and biodiversity. J Forest. 2006;104(2):65-77.
Podrázský V, Čermák R, Zahradník D, Kouba J. Production of Douglas-fi r in the Czech Republic based on national forest inventory data. Journal of Forest Science. 2013;59:398-404.
Schmid M, Pautasso M, Holdenrieder O. Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe. Eur J Forest Res. 2014;133:13-29.
Nihlgard B. Pedological influence of spruce planted on former beech forest soils in Scania, South Sweden. Oikos. 1971;22:302-14.
Ranger J, Nys C. The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental approach. Eur J Soil Sci. 1994;45:193-204.
Binkley D, Giardina C. Why do tree species affect soils? The wrap and the woof of tree-soil interactions. Biogeochemistry. 1998;42:89-106.
Rothe A, Huber C, Kreutzer K, Weis W. Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other European case studies. Plant Soil. 2002;240:33-45.
Oulehle F, Hofmeister J, Hruška J. Modelling of the long-term effect of tree species (Norway spruce and European beech) on soil acidification in the Ore Mountains. Ecol Modell. 2007;204:359-71.
Berger TW, Köllensperger G, Wimmer R. Plant-soil feedback in spruce (Picea abies) and mixed spruce–beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant Soil. 2004;264:69-83.
Penížek V, Zádorova T. Soil Toposequence under Man-Planted Vegetation in the Krkonoše Mts., Czech Republic. Soil Water Res. 2012;7(4):138-50.
Hermann RH, Lavender DP. Douglas-fir planted forests. New Forests. 1999;17:53–70.
Vesterdal L, Schmid KI, Callesen I, Nilsson OL, Gundersen P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol Manag. 2008;255:35-48.
Prietzel J, Bachmann S. Changes in soil organic C and N stocks after forest transformation from Norway spruce and Scots pine into Douglas fir, Douglas fir/spruce, or European beech stands at different sites in Southern Germany. Forest Ecol Manag. 2012;269:134-48.
Banković S, Medarević M, Pantić D, Petrović N. [National Forest Inventory of the Republic of Serbia]. Forestry, Belgrade. 2008;3:1-16. Serbian.
Tomić Z, Rakonjac Lj, Isajev V. The selection of species for reforestation and amelioration in central Serbia, Belgrade: Institute of Forestry; 2011. p. 232.
Isajev V, Lavadinović V. Douglas-fir provenance tests in Serbia. In: Koskela J, Samuel CJA, Matyas C, Fady B. editors. Conifers Network: Report of the fourth meeting; 2003 Oct 18-20; Pitlochry, United Kingdom. Rome: International Plant Genetic Resource Institute, 2007. p. 61-5.
Lavadinović V, Isajev V, Rakonjac Lj, Marković N. Effect of altitude and continentality of Douglas fir provenances on height increment in test plantations in Serbia. Forestry J. 2008;54(1):53-9.
Jussy JH, Ranger J, Bienaime S, Dambrine E. Effect of clear-cut on the in situ nitrogen mineralisation and the nitrogen cycle in a 67-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation. Ann Forest Sci. 2004;61:397-408.
Adams AB, Harrison RB, Sletten RS, Strahm BD, Turnblom EC, Jensen CM. Nitrogen-fertilization impacts on carbon sequestration and flux in managed coastal Douglas-fir stands of the Pacific Northwest. Forest Ecol Manag. 2005;220:313325.
Thiel AL, Perakis SS. Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon. Forest Ecol Manag. 2009;258:273-87.
Remeš J, Pulkrab K, Tauchman P. Production and economical potential of Douglas-fir on selected locality of the School Training Forest Kostelec nad Cernými lesy. In: Podrázský V. editor. News in silviculture of introduced tree species. Prague: Czech University of Life Sciences Prague; 2010. p. 68-9.
Calvaruso C, N'Dira V, Turpault M-P. Impact of common European tree species and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) on the physiocochemical properties of the rhizosphere. Plant Soil. 2011;342:469-80.
Kupka I, Podrázský V, Kubeček J. Soil forming effect of Douglas fir at lower altitudes – a case study. J Forest Sci. 2013;59(9):345-51.
Podrázský V, Martiník A, Matějka K, Viewegh J. Effect of Douglas-fir (Pseudotsuga menziesii Mirb. Franco) on understory layer species diversity in managed forests. J Forest Sci. 2014;60:263-71.
Welke SE, Hope GD. Influences of stand composition and age on forest floor processes and chemistry in pure and mixed stands of Douglas-fir and paper birch in interior British Columbia. Forest Ecol Manag. 2005;219:29-42.
Menšík L, Kulhavý J, Kantor P, Remeš M. Humus conditions of stands with the different proportion of Douglas fir in training forest district Hůrky and the Křtny Forest Training Enterprise. J Forest Sci. 2009;55:345-56.
Podrázský V. Potential of Douglas-fir as a partial substitute for Norway spruce – review of the newest Czech literature. Besydy. 2015;8(1):55-8.
Cvjetićanin R, Bjelanović I. Promene florističkog sastava u veštački podignutim sastojinama četinara na staništu planinske šume bukve na području Bukova. In: Ranđelović V, editor. Proceeding of 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions; 2007 Sep 1-3; Niš, Serbia. Niš (Serbia): Department of Biology and Ecology Faculty of Sciences and Mathematics University; 2008. p. 199-204. Serbian.
Weshoff V, Van der Maarel E. The Braun-Blanquet approach. In: Whittaker RH, editor. Handbook of vegetation science. Vol. 5, Classification and ordination of communities. The Hague: Junk; 1973. p. 617-726.
Karadžić B. Phytosociological analysis of forest vegetation of Maljen. [dissertation]. [Belgrade]: Faculty of Biology, University of Belgrade. 1994. p. 502.
Jávorka S, Csapody V. Iconographia Florae Partis Austro-Orientalis Europae Centralis. Budapest: Akademiai Kiadó; 1975. p. 703.
Ponomareva VV. Plotnikova TA. Simultaneous determination of overall C and N content in peat soils using the Anstet method, modification Ponomareva and Nikolaeva. In: Methods of the determination of humus content and composition in soils (mineral and peat) in Russia. Leningrad: Federal Academy of Agricultural Sciences V. I. Lenin. Central Pedology Museum V.V. Dokucaev; 1975. p. 79-83.
Simakov VN. The use of phenylathranilic acid in the determination of humus by Tyurins method. Pochvovedenie. 1957;8:72-3.
Egner H, Riehm H, Doming WR. Untersuchungen uber die chemishe bodenanalyse als grundlage fur die beurteilung des nahrstoffzustandes der boden. II. Chemische extraktions-methoden zu phosphor – and kalimbestimmung kungl. Lantbrukshoegsk Ann. 1960;26:204-9.
Bocock KL, Gilbert OJ. The disappearance of leaf litter under different woodland conditions. Plant Soil. 1957;9:179-85.
Wieder RK, Lang GE. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology. 1982;63:1636-42.
Albers D, Migge S, Schaefer M,Scheu S. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem. 2004;36(1):155-64.
Olson JS. Energy storage and balance of producers and decomposer in ecological systems. Ecology. 1963;44:322-31.
Djurdjević L, Mitrović M, Pavlović P. The effect of phenolic compounds on soil properties. In: Muscolo A, Sidari M, editors. Soil Phenols. New York: Nova Science Publishers; 2010. p. 31-62.
Hill MO. Opportunities for vegetation management in plantation forest. In: Good JEG, editor. Environmental aspects of plantation forestry in Wales. Institute of Terrestrial Ecology; 1987. p. 64-9.
Augusto L, Ranger J. Impact of tree species on soil solutions in acidic conditions. Ann Forest Sci. 2001;58:47-58.
Komatsu H, Kume T, Otsuki K. The effect of converting a native broadleaved forest to a coniferous plantation forest on annual water yield: a paired-catchment study in northern Japan. Forest Ecol Manag. 2008;255:880-6.
Schume H, Jost G, Hager H. Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. J Hydrol. 2004;289:258-74.
Hendrik SC, Bianchi F. Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech. Neth J Agr Sci. 1995;43(3):321-31.
Breshears DD, Barnes FJ. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landscape Ecol. 1999;14:465-78.
Fisher RF, Binkley D. Ecology and management of forest soils. 4th ed. Wiley-Blackwell, New York; 2012.
Binkley D. The influence of tree species on forest soils: processes and patterns. In: Cornforth IS, Mead DJ, editors. Proceedings of the Trees and Soil Workshop. Canterbury: Lincoln University Publishing; 1996. p. 1-33.
Alfredson H, Condron L, Clarholm M, Davis M. Changes in soil acidity and organic matter following the establishment of conifers on former grassland in New Zeland. Forest Ecol Manag. 1998;112(3):245-52.
Porbeska G, Ostrowska A, Borzyszkowski J. Changes in the soil sorption complex of forest soils in Poland over the past 27 years. Sci Total Environ. 2008;399:105-12.
Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgard B. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecol Manag. 2004;195:373-84.
Podrazsky V, Remeš J, Hart V, Moser WK. Production and humus form development in forest stands established on agricultural lands – Kostelec nad Černymi lesy region. J Forest Sci. 2009;55(7):299-305.
Podrázský V, Remeš J, Maxa M. [Whether Douglas fir degrades the forest lands?]. Lesnická práce. 2001;80:393-5. Czech.
Martiník A. Possibilities of growing Douglas fir (Pseudotsuga menziesii /Mirb./ Franco) in the conception of sustainable forest management. Ekológia (Bratislava). 2003;22:136-46.
Kantor P. Production potential of Douglas fir at mesotrophic sites of Křtiny Training Forest Enterprise. J Forest Sci. 2008;54:321–332.
Gauthier A, Amiotte-Suchet P, Nelson PN, Lévêque J, Zeller B, Hénault C. Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas-fir plantation and an oak-beech forest – an incubation experiment. Plant Soil. 2010;330(1-2):465-79.
Negrete-Yankelevich S, Fragoso C, Newton AC, Heal OW. Successional changes in soil, litter and macroinvertebrate parameters following selective logging in a Mexican Cloud Forest. Appl Soil Ecol. 2007;35:340-55.
Bergkvist B, Folkeson L. The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems. Ecol Bull. 1995;44:90-9.
Fichter J, Dambrine E, Turpault MP, Ranger J. Base cation supply in spruce and beech ecosystems of the Strengbach catchment (Vosges mountains, N-E France). Water Air Soil Poll. 1998;105:125-48.
Regina IS, Tarazona T. Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry. 2001;74(1):11-28.
Mareschal L, Tripault M-P, Bonnaud P, Ranger J. Relationship between the weathering of clay minerals and the nitrification rate: a rapid tree species effect. Biogeochemistry. 2013;112:293-309.
Marques R, Ranger J, Villette S, Granier A. Nutrient dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb). France) stands on the Beaujolais Mounts (France). 2. Quantitative approach. Forest Ecol Manag. 1997;92:167-97.
Ugolini F, Sletten RS. The role of proton donors in pedogenesis as revealed by soil solution studies. Soil Sci. 1991;151:59-74.
Van Breemen N, Mulder J, Driscoll CT. Acidification and alkalinization of soils. Plant Soil. 1983;75:283-308.
Aber J.D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Tree. 1992:7(7):220-4.
Currie WS, Aber JD, Driscoll CT. Leaching of nutrient cations from the forest floor: effects of nitrogen saturation in two longterm manipulations. Can J Forest Res. 1999;29:609-20.
Perakis SS, Sinkhorn ER. Biogeochemistry of a temperate forest nitrogen gradient. Ecology. 2011;92:1481-1491.
Trum F, Titeux H, Ranger J, Delvaux B. Influence of tree species on carbon and nitrogen transformation patterns in forest floor profiles. Ann Forest Sci. 2011;68:837-47.
Berger WT, Swoboda S, Prohaska T, Glatzel G. The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). Forest Ecol Manag. 2006;229:234-46.
Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Oxford: Blackwell; 1979. p. 372.
Pavlović P. Pedological components of the metabolism of some forest communities on Mt. Maljen. [dissertation]. [Belgrade]: Faculty of Biology, University of Belgrade. 1998. p. 268.
Pavlović P, Mitrović M, Popović R. Prognosis of litter decomposition rate in different forest ecosystems at Cer mountain. Arch Biol Sci. 1998;50(2):109-18.
Berg B, Johansson MB, Meentemeyer V. Litter decomposition in transect of Norway spruce forest: Substrate quality and climate control. Can J Forest Res. 2000;30:1136-47.
Kubartová A, Ranger J, Berthelin J, Beguiristain T. Diversity and Decomposing Ability of Saprophytic Fungi from Temperate Forest Litter. Microb Ecol. 2009;58:98-107.
Vesterdal L, Raulund-Rasmussen K. Forest floor chemistry under seven tree species along a soil fertility gradient. Can J Forest Res. 1998;28(11):1636-47.
Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbean A, Tack FMG, Verheyen K. Tree species effect on the redistribution of soil metals. Environ Pollut. 2007;149:173-81.
Downloads
Published
How to Cite
Issue
Section
License
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.