Field sampling methods for investigating forest-floor bryophytes: Microcoenose vs. random sampling
Keywords:
bryophytes, microplots, sampling, forests, diversityAbstract
Paper description:
- Despite the importance of bryophytes in forests, these plants are usually ignored in forest ecosystem studies, and a standardized methodology for quantifying bryophyte abundance in forest communities is still lacking. Among several used methods, quadrat sampling is the most common.
- The microcoenose method for quantifying bryophytes is a systematic sampling method developed in broadleaved forests in China, but it has never been tested and compared with the random sampling method in temperate beech forests.
- The high applicability of the microcoenose method in a broadleaved forest with patchy bryophyte distribution is a step towards its standardization for bryophyte quantification.
Abstract: Because of the high importance of bryophytes in forest ecosystems, it is necessary to develop standardized field sampling methodologies. The quadrat method is commonly used for bryophyte diversity and distribution pattern surveys. Quadrat size and the position of quadrats within the studied area have a significant influence on different analyses. The aim of the present study was to define the minimum quadrat size appropriate for sampling ground bryophytes in temperate beech forests, to compare two different field sampling methods for research on ground bryophytes, the random and microcoenose methods; and to test the adequacy of the microcoenose sampling method in temperate beech forests. Research was carried out on Fruška Gora mountain (Serbia) at four different sites. All sites contained temperate broadleaf forest vegetation, predominantly Fagus sylvatica, but also included various other tree species. Systematic sampling based on nested quadrats was used to determine the minimum sampling area. Random sampling was performed using 10 or 20 microplots (minimum area quadrat), randomly located within 10x10 m plots. Microcoenose sampling is a systematic sampling method based on the fact that every bryophyte fragment on the forest floor is a separate microcoenose. These methods were compared using the following criteria: species richness; Shannon’s diversity index and evenness measure; coverage of dominant species, and the time needed for sampling. The microcoenose sampling method has proven to be highly applicable in temperate beech forests in terms of species richness and diversity, in contrast to random sampling, which was not suitable for bryophyte flora with a patchy distribution.
https://doi.org/10.2298/ABS180422020I
Received: April 22, 2018; Revised: May 9, 2018; Accepted: May 10, 2018; Published online: May 15, 2018
How to cite this article: Ilić M, Igić R, Ćuk M, Vukov D. Field sampling methods for investigating forest-floor bryophytes: Microcoenose vs. random sampling. Arch Biol Sci. 2018;70(3):…
Downloads
References
Steel JB, Wilson B, Anderson BJ, Lodge RHE, Tangney RS. Are bryophyte communities different from higher-plant communities? Abundance relations. Oikos. 2004;104:479-86.
Grytnes JA, Heegaard E, Ihlan PG. Species richness of vascular plants, bryophytes and lichens along an altitudinal gradient in western Norway. Acta Oecol. 2006;29:241-46.
Rieley J, Richards P, Bebbington A. The ecological role of bryophytes in North Wales woodland. J Ecol. 1979;67:497-527.
Hofstede RGM, Wolf JHD, Benzing DH. Epiphyte biomass and nutrient status of a Colombian upper montane rain forest. Selbyana. 1993;14:37–45.
Deluca TB, Zackrisson O, Nilsson MC, Sellstedt A. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature. 2002;419:917-20.
Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P (2006). Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecol Manag. 2006;221:241-48.
Vanderpoorten A, Papp B, Gradstein R. Sampling of bryophytes. In: Eymann J, Degreef J, Häuser C, Monje JC, Samyn Y, Vandespiegel D, editors. Manual on field recording techniques and protocols for all taxa biodiversity inventories Vol 8. Belgium: ABC taxa; 2010. p. 331-45.
Frego KA. Bryophytes as potential indicators of forest integrity. Forest Ecol Manag. 2007;242:65-75.
Braun-Blanquet J. Pflanzensoziologie-Grundzüge der Vegetationskunde. 3rd edition. Vienna: Springer; 1964. 866 p.
Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213-51.
Diersche H. Pflanzensoziologie-Grundlagen und Methoden. Stuttgart: Ulmer; 1994. 683 p.
Dengler J, Chytrý M, Edwald J. Phytosociology. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology 5. Oxford: Elsevier; 2008. p. 2767-79.
Davis RB. Bryophytes and lichens of the spruce-fir forests of the coast of Maine I. The ground cover. Bryologist. 1964;67:189-94.
Hattaway RA. The calciphilous bryophytes of three limestone sinks in eastern Tennessee. Bryologist. 1980;83:161-69.
Kimmerer RW (1994). Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist. 1994;97:20-5.
Stehn SE, Webster CR, Glime JM, Jenkins MA. Ground layer Bryophyte communities of post-adelgid Picea-Abies forests. Southeast Nat. 2010;9(3):435-52.
Newmaster SG, Belland RJ, Arsenault A, Vitt DH, Stephens TR. The ones we left behind: Comparing plot sampling and floristic habitat sampling for estimating bryophyte diversity. Divers Distrib. 2005;11:57-72.
Bowering R, Wigle R, Padgett T, Adams B, Cote D, Wiersma Y. Searching for rare species: A comparison of Floristic Habitat Sampling and Adaptive Cluster Sampling for detecting and estimating abundance. Forest Ecol Manag. 2018;407:1-8.
Rambo TR, Muir PS. Forest floor bryophytes of Pseudotsuga menziesii-Tsuga heterophylla stands in Oregon: Influences of substrate and overstory. Bryologist. 1998;101(1):116-30.
Vellak K, Paal J. Diversity of bryophyte vegetation in some forest types in Estonia: a comparison of old unmanaged and managed forests. Biodivers Conserv. 1999;8:1595-620.
Hokkanen PJ. Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forests. Forest Ecol Manag. 2006;229:73-87.
Ah-Peng C, Chuah-Petiot M, Descamps-Julien B, Bardat J, Stamenoff P, Strasberg D. Bryophyte diversity and distribution along an altitudinal gradient on lava flow in la Réunion. Divers Distrib. 2007;13(5):654-62.
Økland RH, Rydgren K, Økland T. Species richness in boreal swamp forests of SE Norway: The role of surface microtopography. J Veg Sci. 2008;19:67-74.
Turetsky MR, Mack MC, Hollingsworth TN, Harden JW. The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can J Forest Res. 2010;40:1237-64.
Širka P, Petrášová A, Sabovljević M. Grassland bryophyte assemblages of Fruška Gora Mountain (Serbia). Bot Serb. 2013;37(2):91-5.
Jiang Y, Xuehua L, Song S, Yu Z, Shao X. Diversity and distribution of ground bryophytes in broadleaved forests in Mabian Dafengding National Nature Reserve, Sichuan, China. Acta Ecol Sin. 2015;35:13-9.
Dengler J. Entwicklung und Bewertung neuer Ansätze in der Pflanzensoziologie unter besonderer Berücksichtigung der Vegetationsklassifikation. Archiv naturwissenschaftlicher Dissertationen 14. Nümbrecht: Martina Galunder-Verlag; 2003. 301 p.
Berg C, Schwager P, Pöltl M, Dengler J. Plot sizes used for phytosociological sampling of bryophyte and lichen micro-communities. Herzogia. 2016;29(2):654-67.
Barkman JJ. A critical evaluation of Minimum area concepts. Vegetatio. 1989;85:89-104.
Moravec J. The determination of the minimal area of phytocenoses. Folia Geobot Phytotx. 1973;8:23-47.
Slack NG. A new look at bryophyte community analysis: field and statistical methods. J Hattori Bot Lab. 1984;55:113-32.
Jiang Y, Liu X, Tian R, Shao X. Field-sampling methods for investigating ground-bryophyte populations in forest vegetation. Pol J Ecol. 2011;59(2):317-27.
Obradović M. Biljnogeografska analiza flore Fruške gore. Novi Sad: Matica srpska; 1966. 226 p.
Ilić M, Ćuk M, Rućando M, Igić R, Vukov D. Historical review of bryological research in Fruška gora Mt. (Serbia). Matica Srpska J Nat Sci. 2016;131:19-31.
Miljković N. Zemljišta Fruške gore. Novi Sad: Matica srpska; 1975. 99 p.
Cvetić T, Sabovljević M. A contribution to the bryophyte flora of Fruška gora (Vojvodina, Serbia). Phyt Balc. 2005;11(1):35-43.
Stevanović V. Ekologija, fitocenologija i floristička struktura stepske vegetacije Fruške gore. [dissertation]. [Belgrade]: Faculty of sciences, University of Belgrade. 1984. 211 p.
Sörensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol Skrif. 1948;5:1-34.
Cain SA. The species-area curve. Am Midl Nat. 1938;19(3):573-81.
Gounot M, Calléja M. Coefficient de communauté, homogénéité et aire minimale. In: Calléja M, Dagnelie P, Gounot M, editors. Etude statistique d’une pelouse à Brachypodium ramosum. Bull Serv Carte Phytog. 1962;7:181-200.
Magurran AE. Measuring biological diversity. Oxford: Blackwell publishing; 2010. 256 p.
DELL INC. Dell Statistica (data analysis software system), version 13. software.dell.com. 2016.
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron. 2001;4(1):9.
Peet RK. The measurement of species diversity. Annu Rev Ecol Syst. 1974;5:285-307.
Bates JW. Quantitative approaches in bryophyte ecology. In: Smith AJE, editor. Bryophyte ecology. Dordrecht: Springer; 1982. p. 1-44.
Saetersdal M, Gjerde I, Blom HH, Ihlen PG, Myrseth EW, Pommeresche R, Skartveit J, Solhøy T, Aas O. Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails and wood living polypore fungi in a northern forest. Biol Conserv. 2003;115:21-31.
Glime J. Bryophyte ecology. Volume 1: Physiological ecology. Michigan Technological University and the International Association of Bryologists, Houghton. 2017. Available: http://www.bryoecol.mtu.edu
Økland RH. Patterns of bryophyte associations at different scales in a Norwegian boreal spruce forest. J Veg Sci. 1994;5:127-38.
Thomas SC, Liguori DA, Halpern CB. Corticolous bryophytes in managed Douglas-fir forests: habitat differentiation and responses to thinning and fertilization. Can J Bot. 2001;79:886-96.
Kenkel NC, Bradfield GE. Ordination of epiphytic bryophyte communities in wet-temperate coniferous forest, South-Coastal British Columbia. Vegetatio. 1981;45:147-54.
McCune, B. Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of different ages in Western Oregon and Washington. Bryologist. 1993;96(3):405-11.
Whitelaw M, Burton MAS. Diversity and distribution of epiphytic bryophytes on Bramley’s Seedling trees in East of England apple orchards. Glob Ecol Conserv. 2015;4:380-7.
Chantanaorrapint S. Ecological studies of epiphytic bryophytes along altitudinal gradients in Southern Thailand. [dissertation]. [Bonn]: Mathematisch – Naturwissenschaftlichen Fakultät der Rheinischen-Friedrich-Wilhelms-Universität Bonn. 2010. 112 p.
Vukov D, Galić Z, Rućando M, Ilić M, Ćuk M, Igić D, Igić R, Orlović S. Effects of natural broadleaved regeneration vs conifer restoration on the herb layer and microclimate. Arch Biol Sci. 2016;68(3):483-93.
Podani J, Czàràn T, Bartha S. Pattern, area and diversity: the importance of spatial scale in species assemblages. Abst Bot. 1993;17(1-2):37-51.
Scott GAM. The Quantitative description of New Zealand bryophyte communities. Proc New Zeal Ecol Soc. 1966;13:8-11.
Downloads
Published
How to Cite
Issue
Section
License
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.