New spectral templates for rhodopsin and porphyropsin visual pigments
Keywords:
spectral sensitivity, electroretinography (ERG), rhodopsin, porphyropsin, fishAbstract
Paper description:
- We compared a model for spectral sensitivity data designed in our laboratory with the widely used template.
- Our model was designed with fewer (four) parameters, which we believe brings us closer to understanding the true nature of the absorption curve.
- In the fitting of spectral sensitivity data it uses non-transformed wavelengths. As a result, the shape of the curve remains the same for a broad range of lmax values.
Abstract: A four-parameter model of spectral sensitivity curves was developed. Empirical equations were designed for A1- and A2-based visual pigments with the main a-band maximum absorptions (lmax) from 350 nm, near the ultraviolet, up to 635 nm in the far-red part of the spectrum. Subtraction of the a-band from the full absorbance spectrum left a “b-band” described by a lmax-dependent Gaussian equation. Compatibility of our templates with A1-and A2-based spectra was tested on the electroretinographic (ERG-derived) scotopic action spectra recorded in dogfish shark, eel, Prussian carp and perch. To more precisely estimate the accuracy of our model, we compared it with widely used templates for visual pigments. There was almost no difference between the tested models in fitting the above-mentioned spectral data. One of the advantages of our model is that in the fitting of spectral sensitivity data it uses non-transformed wavelengths and the shape of the curve remains the same for a broad range of lmax values. Compared to multiparameter templates of other authors, our model was designed with fewer (four) parameters, which we believe can bring us closer to understanding the true nature of the absorption curve.
https://doi.org/10.2298/ABS180822052G
Received: August 22, 2018; Revised: November 7, 2018; Accepted: November 14, 2018; Published online: November 20, 2018
How to cite this article: Gačić Z, Mićković B, Gačić L, Damjanović I. New spectral templates for rhodopsin and porphyropsin visual pigments. Arch Biol Sci. 2018;71(1):103-10.
Downloads
References
Dartnall HJA. The interpretation of spectral sensitivity curves. Br Med Bull. 1953;9:24-30.
Ebrey TG, Honig B. New wavelength-dependent visual pigment nomogram. Vis Res. 1977;17:147-51.
Metzler DE, Harris CM. Shapes of spectral bands of visual pigments. Vis Res. 1978;18:1417-20.
Dawis SM. Polynomial expression of pigment nomograms. Vis Res. 1981;21:1427-430.
Barlow HB. What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vis Res. 1982;22:635-43.
Maximov VV. Approximation of visual pigment absorbance spectra. Senssornye Sistemy. 1988;2:3-9. Russian.
Mansfield RJW. Primate photopigments and cone mechanisms. In: Levine JS, Fein A, editors. The Visual System. New York: Alan Liss; 1985. p. 89-106.
Mansfield RJW, Levine JS, Lipetz LE, Oleszko-Szuts S, Macnichol EFJr. Vertebrate visual pigments: Canonical form of the absorbance spectra a-band. Invest Ophthalmol Vis Sci. 1986; 27:193.
Macnichol EF. A unifying presentation of photopigment spectra. Vis Res. 1986;26:1543-56.
Stavenga DG, Smits RP, Hoenders BJ. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vis Res. 1993; 33:1011-7.
Partridge JC, De Grip WJ. A new template for rhodopsin (vitamin A1 based) visual pigments. Vis Res. 1991;31:619-30.
Hárosi FI. An analysis of two spectral properties of vertebrate visual pigments. Vis Res. 1994;34:1359-67.
Lamb TD. Photoreceptor spectral sensitivities: Common shape in the long-wavelength region. Vis Res. 1995;35(22):3083-91.
Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K. In search of the visual pigment template. Vis Neurosci. 2000;17:509-28.
Kondrashev SL. Spectral sensitivity and visual pigments of retinal photoreceptors in near-shore fishes of the Sea of Japan. Russ J Mar Biol. 2010; 36(6):443-51.
Shand J, Hart NS, Thomas N, Partridge JC. Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. J Exp Bio. 2002;205:3661-7.
Stavenga DG. On visual pigment templates and the spectral shape of invertebrate rhodopsins and metarhodopsins. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(11):869-78.
Lisney TJ, Studd E, Hawryshyn CW. Electrophysiological assessment of spectral sensitivity in adult Nile tilapia Oreochromis niloticus: evidence for violet sensitivity. J Exp Bio. 2010;213:1453-63.
Dowling JE, Ripps H. S-potentials in the skate retina. Intracellular recordings during light and dark adaptation. J Gen Physiol. 1971;58:163-90.
Gačić Z, Damjanović I, Mićković B, Hegediš A, Nikčević M. Spectral sensitivity of the dogfish shark (Scyliorhinus canicula). Fish Physiol Biochem. 2007a;33:21-7.
Gačić Z, Bajić A, Milošević M, Nikčević M, Mićković B, Damjanović I. Spectral sensitivity of the perch (Perca fluviatilis) from the Danube. Arch Biol Sci. 2007b;59:335-40.
Gačić Z, Bajić A, Milošević M, Nikčević M, Mićković B, Hegediš A, Gačić L, Damjanović I. Spectral sensitivity of the electroretinogram b-wave in dark-adapted Prussian carp (Carassius gibelio Bloch, 1782). Fish Physiol Biochem. 2014;40:1899-906.
Bridges CDB. Photopigments in the char of Lake Windermere (Salvelinus willughbii, forma autumnalis and forma vernalis). Nature 1967;214:205-6.
Powers MK, Easter SS. Wavelength discrimination by the goldfish near absolute visual threshold. Vis Res. 1978;18:1149-54.
Naka KI, Rushton WAH. S-potentials from luminosity units in the retina of fish (Cyprinidae). J Physiol. 1966;185:587-99.
Zaret WN. The effects of calcium, calcium-chelating drugs and methylxanthines on the vertebrate photoreceptor potential [dissertation]. [New York]: New York University. 1973. 120p.
Palacios AG, Goldsmith TH, Bernard GD. Sensitivity of cones from a cyprinid fish (Danio aequipinnatus) to ultraviolet and visible light. Vis Neurosci. 1996;13:411-21.
Baylor DA, Fuortes MGF. Electrical response of single cones in the retina of the turtle. J Physiol. 1970;207:77-92.
Lipton SA, Ostroy SE, Dowling JE. Electrical and adaptive properties of rod photoreceptors in Bufo marinus. J Gen Physiol. 1977;70:747-70.
Carlisle DB, Denton E J. On the metamorphosis of the visual pigments of Anguilla anguilla (L.). J Mar Biol Assoc UK. 1959;38:97-102.
Andjus RK, Damjanović I, Gačić Z, Konjević D, Andjus PR. Electroretinographic evaluation of spectral sensitivity in yellow and silver eels (Anguilla anguilla). Vis Neurosci. 1998;15:923-30.
Cameron NE. The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis). Vis Res. 1982;22:1341-8.
Dartnall,HJA, Lander MR, MUNZ, W. Periodic changes in the visual pigment of a fish. In: Cristiansen B, Buchmann B, editors. Progress in Photobiology. Amsterdam: Elsevier; 1961. p. 203-13.
Allen DM. Photic control of two visual pigments in fish. Vis Res. 1971;11:1077-112.
Loew ER, Dartnall HJA. Vitamin A1/A2 based visual pigment mixtures in cones of the rudd. Vis Res. 1976;16:891-6.
Whitmore AV, Bowmaker JK. Seasonal variation in cone sensitivity and short-wave absorbing visual pigments in the rudd Scardinius erythrophthalmus. J Comp Physiol A. 1989;166:103-15.
Beatty DD. Visual pigments of the American eel Anguilla rostrata. Vis Res. 1975;15:771-6.
Downloads
Published
How to Cite
Issue
Section
License
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.