Expression of miRNA-210 in human bone marrow-derived mesenchymal stromal cells under oxygen deprivation

Authors

  • Darija Lončarić 1. Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia; 2. Etablissement Français du Sang, Bordeaux Nouvelle Aquitaine, Bordeaux, France; 3. University Bordeaux INSERM, U 1035, Biotherapie des Maladies Genetiques, Desorderes Inflammatories et Cancer, BMGIC, 33076 Bordeaux, France
  • Biljana Stanković Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade
  • Amani Ghousein University Bordeaux INSERM , UMR 1035, Biotherapie des Maladies Genetiques, Desorderes Inflammatories et Cancer, BMGIC, 33076 Bordeaux
  • Miša Vreća Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade
  • Vesna Spasovski Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade
  • Arnaud Villacreces Univ. Bordeaux, INSERM, Leukemic and Normal Hematopoietic Stem Cells, Hypoxia Core Facility, U 1035, F – 33000, Bordeaux
  • Christelle Debeissat 1. Etablissement Français du Sang, Bordeaux Nouvelle Aquitaine, Bordeaux; 2. University Bordeaux INSERM, U 1035, Biotherapie des Maladies Genetiques, Desorderes Inflammatories et Cancer, BMGIC, 33076 Bordeaux
  • Christophe Grosset University Bordeaux INSERM , UMR 1035, Biotherapie des Maladies Genetiques, Desorderes Inflammatories et Cancer, BMGIC, 33076 Bordeaux
  • Zoran Ivanović 1. Etablissement Français du Sang, Bordeaux Nouvelle Aquitaine, Bordeaux; 2. University Bordeaux INSERM, U 1035, Biotherapie des Maladies Genetiques, Desorderes Inflammatories et Cancer, BMGIC, 33076 Bordeaux
  • Sonja Pavlović Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia

Keywords:

mesenchymal stromal cells, oxygen deprivation, miRNA-210, HIF-1α, HIF-2α

Abstract

Paper description:

  • Cultivation of human bone marrow derived mesenchymal stromal cells (hBM MStroC) expanded at oxygen deprivation conditions increases their efficiency in tissue regeneration.
  • We report a significant increase in miRNA-210 expression during prolonged hBM MStroC expansion at oxygen deprivation, and the involvement of hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2) in miRNA-210 expression regulation.
  • This is the first study on the expression of miRNA-210 in extended exposure of hBM MStroC to oxygen deprivation, indicating miRNA-210 as a good candidate for a hypoxia-mimicking approach in stem cell therapy.

Abstract: A major limitation in the development of efficient clinical protocols for mesenchymal stromal cell (MStroC)-based tissue regeneration therapy is the low retention and survival of MStroC in injured tissue after therapeutic administration. Low oxygen concentration preconditioning(LOP) during ex vivo cultivation of MStroC, as a method for mimicking oxygenation in their physiological microenvironment, has been shown to be beneficial in clinical trials using MStroC. Introducing hypoxia-mimicking molecules into MStroC during cultivation could be an advantageous LOP strategy. MicroRNA (miRNA) drugs are good candidates for this approach. Analysis of the expression of miRNA-210 in human bone marrow-derived MStroC in conditions of acute and extended hypoxia (24 to 72 h) was performed using RT-qPCR methodology. HIF-1α and HIF-2α gene knockdown cell lines were generated using lentiviral transduction of short hairpin RNA (shRNA) in order to examine whether miRNA-210 expression is regulated by transcription factor HIF-1 and/or HIF-2. We detected a significant increase in miRNA-210 expression in hypoxic conditions at time points of 24, 48 and 72 h (p˂0.05). Knocking down of HIF-1α and HIF-2α genes indicated involvement of both transcription factors in the elevation of miRNA-210 expression. These results point to miRNA-210 as a good candidate for a hypoxia-mimicking molecule in LOP strategy.

https://doi.org/10.2298/ABS181117001L

Received: November 17, 2018; Revised: January 6, 2019; Accepted: January 8, 2019; Published online: January 14, 2019

How to cite this article: Lončarić D, Stanković B, Ghousein A, Vreća M, Spasovski V, Villacreces A, Debeissat C, Grosset CF, Ivanović Z, Pavlović S. Expression of miRNA-210 in human bone marrow-derived mesenchymal stromal cells under oxygen deprivation. Arch Biol Sci. 2019;71(2):201-8.

Downloads

Download data is not yet available.

References

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-7.

Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med. 2017;6(6):1445-51.

Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076-84.

Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng. 2004;32(1):160-5.

Mark P, Kleinsorge M, Gaebel R, Lux CA, Toelk A, Pittermann E, David R, Steinhoff G, Ma N. Human Mesenchymal Stem Cells Display Reduced Expression of CD105 after Culture in Serum-Free Medium. Stem Cells Int. 2013;2013:698076.

Mirza A, Hyvelin JM, Rochefort GY, Lermusiaux P, Antier D, Awede B, Bonnet P, Domenech J, Eder V. Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. J Vasc Surg. 2008;47(6):1313-21.

Otto WR, Wright NA. Mesenchymal stem cells: from experiment to clinic. Fibrogenesis Tissue Repair. 2011;4:20.

Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938-44.

Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L, Yuan ZR, Roberts AI, Shi S, Le AD, Shi Y. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012;19(9):1505-13.

Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A. 2005;102(50):18171-6.

Kim N, Cho SG. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells. 2015;8(1):54-68.

Kim HJ, Park JS. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Dev Reprod. 2017;21(1):1-10.

Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells. 2015;33(6):1818-28.

Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(1):93-8.

Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150-61.

Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856-67.

He A, Jiang Y, Gui C, Sun Y, Li J, Wang JA. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Can J Cardiol. 2009;25(6):353-8.

Rosova I, Dao M, Capoccia B, Link D, Nolta JA. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26(8):2173-82.

Huang WH, Chen HL, Huang PH, Yew TL, Lin MW, Lin SJ, Hung SC. Hypoxic mesenchymal stem cells engraft and ameliorate limb ischaemia in allogeneic recipients. Cardiovasc Res. 2014;101(2):266-76.

Leroux L, Descamps B, Tojais NF, Seguy B, Oses P, Moreau C, Daret D, Ivanovic Z, Boiron JM, Lamaziere JM, Dufourcq P, Couffinhal T, Duplaa C. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther. 2010;18(8):1545-52.

Zhu H, Sun A, Zou Y, Ge J. Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia: a hypoxia-induced and glycogen-based energy prestorage strategy. Arterioscler Thromb Vasc Biol. 2014;34(4):870-6.

Chang CP, Chio CC, Cheong CU, Chao CM, Cheng BC, Lin MT. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin Sci (Lond). 2013;124(3):165-76.

Sandvig I, Gadjanski I, Vlaski-Lafarge M, Buzanska L, Loncaric D, Sarnowska A, Rodriguez L, Sandvig A, Ivanovic Z. Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev. 2017;26(8):554-65.

Mohammadali F, Abroun S, Atashi A. Combined mild hypoxia and bone marrow mesenchymal stem cells improve expansion and HOXB4 gene expression of human cord blood CD34+ stem cells. Arch Biol Sci. 2018;3:433-41.

Varum S, Momcilovic O, Castro C, Ben-Yehudah A, Ramalho-Santos J, Navara CS. Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res. 2009;3(2-3):142-56.

Loncaric D, Duchez P, Ivanovic Z. To harness stem cells by manipulation of energetic metabolism. Transfus Clin Biol. 2017;24(4):468-71.

Das R, Jahr H, van Osch GJ, Farrell E. The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 2010;16(2):159-68.

Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC. Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res. 2012;2(3):148-59.

Ma T, Grayson WL, Frohlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog. 2009;25(1):32-42.

Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012;336(6078):237-40.

Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs. Science. 2011;331(6017):550-3.

David R. Small RNAs: miRNA machinery disposal. Nat Rev Mol Cell Biol. 2013;14(1):4-5.

Li N, Long B, Han W, Yuan S, Wang K. microRNAs: important regulators of stem cells. Stem Cell Res Ther. 2017;8(1):110.

Ivan M, Huang X. miR-210: fine-tuning the hypoxic response. Adv Exp Med Biol. 2014;772:205-27.

Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol. 2018;233(8):5574-88.

Rupaimoole R, Han HD, Lopez-Berestein G, Sood AK. MicroRNA therapeutics: principles, expectations, and challenges. Chin J Cancer. 2011;30(6):368-70.

van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res. 2012;110(3):496-507.

Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283(23):15878-83.

Hu R, Li H, Liu W, Yang L, Tan YF, Luo XH. Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opin Ther Targets. 2010;14(10):1109-20.

Huang X, Le QT, Giaccia AJ. MiR-210--micromanager of the hypoxia pathway. Trends Mol Med. 2010;16(5):230-7.

Chang W, Lee CY, Park JH, Park MS, Maeng LS, Yoon CS, Lee MY, Hwang KC, Chung YA. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1. J Vet Sci. 2013;14(1):69-76.

McCormick RI, Blick C, Ragoussis J, Schoedel J, Mole DR, Young AC, Selby PJ, Banks RE, Harris AL. miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br J Cancer. 2013;108(5):1133-42.

Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29(30):4362-8.

Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273-84.

Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, Burchard J, Dai X, Chang AN, Diaz RL, Marszalek JR, Bartz SR, Carleton M, Cleary MA, Linsley PS, Grandori C. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8(17):2756-68.

Kim HW, Haider HK, Jiang S, Ashraf M. Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009;284(48):33161-8.

Buravkova LB, Andreeva ER, Gogvadze V, Zhivotovsky B. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion. 2014;19 Pt A:105-12.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.

Brahimi-Horn MC, Pouyssegur J. Oxygen, a source of life and stress. FEBS Lett. 2007;581(19):3582-91.

Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J. 2007;405(1):1-9.

Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49(1):1-15.

Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest. 2007;117(4):862-5.

Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem. 2011;112(3):804-17.

Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E, Clerici C. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem. 2004;279(15):14871-8.

Koh MY, Lemos R Jr, Liu X, Powis G. The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res. 2011;71(11):4015-27.

Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci. 2012;37(9):364-72.

Downloads

Published

2019-06-04

How to Cite

1.
Lončarić D, Stanković B, Ghousein A, Vreća M, Spasovski V, Villacreces A, Debeissat C, Grosset C, Ivanović Z, Pavlović S. Expression of miRNA-210 in human bone marrow-derived mesenchymal stromal cells under oxygen deprivation. Arch Biol Sci [Internet]. 2019Jun.4 [cited 2024Dec.26];71(2):201-8. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/3640

Issue

Section

Articles

Most read articles by the same author(s)