Reproductive characteristics of two Triturus species (Amphibia: Caudata)
Keywords:
life history traits, hybrid zone, Salamandridae, TriturusAbstract
Paper description:
- Two newt species, Triturus ivanbureschi and T. macedonicus hybridizе and form a moving hybrid zone in the central part of Serbia.
- In a common garden experiment, we collected data on the number and size of the deposited eggs, and the dynamics and duration of the oviposition period during three consecutive years.
- T. macedonicus females started oviposition later and laid more larger eggs in comparison to T. ivanbureschi.
- The obtained data and observed differences provide basic information on the biology of these two species.
Abstract: During three consecutive years, we compared the reproductive characteristics and oviposition dynamics of two crested newt species, Triturus ivanbureschi and T. macedonicus. These two well-defined species are of special interest because of complex interactions at their contact zone, which include hybridization, species replacement and asymmetric mitochondrial DNA introgression. In common garden experiments, females were introduced to conspecific males, to males of other species and to hybrid males. We monitored the total number and size of the deposited eggs, as well as the dynamics and duration of oviposition during three consecutive years. The number of deposited eggs of Triturus species was much higher than previously reported. Triturus macedonicus lay more eggs that were of larger size in comparison to T. ivanbureschi. Also, the onset of T. macedonicus oviposition was considerably delayed compared to T. ivanbureschi. These are fundamental data, important for understanding complex species interactions in their contact zones.
https://doi.org/10.2298/ABS200328026V
Received: March 28, 2020; Revised: June 10, 2020; Accepted: June 11, 2020; Published online: June 17, 2020
How to cite this article: Vučić T, Ivanović A, Nikolić S, Jovanović J, Cvijanović M. Reproductive characteristics of two Triturus species (Amphibia: Caudata). Arch Biol Sci. 2020;72(3):321-8.
Downloads
References
Duellman WE, Trueb L. Biology of Amphibians. New York, USA: McGraw Hill; 1986.
Díaz-Paniagua C. Oviposition behavior of Triturus marmoratus pygmaeus. J Herpetol. 1989;23(2):159-63.
Arntzen JW, Hedlund L. Fecundity of the newts Triturus cristatus, T. marmoratus and their natural hybrids in relation to species coexistence. Holarct Ecol. 1990;13(4):325-32.
Miaud C. Role of wrapping behavior on egg survival in three species of Triturus (Amphibia: Urodela). Am Soc Ichtyologists Herpetol. 1994;1994(2):535-7.
Miaud C. Oviposition site selection in three species of European Newts (Salamandridae) genus Triturus. Amphibia-Reptilia. 1995;16:265-72.
Orizaola G, Braña F. Oviposition behaviour and vulnerability of eggs to predation in four newt species (Genus Triturus). Herpetol J. 2003;13:121-4.
Miaud C. Predation on newt eggs (Triturus alpestris and T. helveticus): identification of predators and protective role of oviposition behaviour. J Zool. 1993;231:575-81.
Marco A, Lizana M, Alvarez A, Blaustein AR. Egg-wrapping behaviour protects newt embryos from UV radiation. Anim Behav. 2001;61(3):639-44.
Ortiz-Santaliestra ME, Marco A, Fernández-Benéitez MJ, Lizana M. Effects of ammonium nitrate exposure and water acidification on the dwarf newt: The protective effect of oviposition behaviour on embryonic survival. Aquat Toxicol. 2007;85(4):251-7.
Kaplan RH, Salthe SN. The allometry of reproduction: an empirical view in salamanders. Am Nat. 1979;113(5):671-89.
Kaplan RH, Cooper WS. The evolution of developmental plasticity in reproductive characteristics: an application of the “adaptive coin-flipping” principle. Am Nat. 1984;123(3):393-410.
Kalezić ML, Cvetković D, Đorović A, Džukić G. Paedomorphosis and differences in life-history traits of two nieghbouring crested newt (Triturus carnifex) populations. Herpetol J. 1994;4(4):151-8.
Rafińska A. Reproductive biology of the fire‐bellied toads, Bombina bombina and B. variegata (Anura: Discoglossidae): egg size, clutch size and larval period length differences. Biol J Linn Soc. 1991;43(3):197-210.
Bell G. The life of the smooth newt (Triturus vulgaris) after metamorphosis. Ecol Monogr. 1977;47(3):279-99.
Verrell PA, Francillon H. Body size, age and reproduction in the Smooth newt, Triturus vulgaris. J Zool. 1986;210:89-100.
Berven KA, Chadra BG. The relationship among egg size, density and food level on larval development in the wood frog (Rana sylvatica). Oecologia. 1988;75:67-72.
Loman J. Microevolution and maternal effects on tadpole Rana temporaria growth and development rate. J Zool. 2002;257(1):93-9.
Furtula M, Todorović B, Simić V, Ivanović A. Interspecific differences in early life-history traits in crested newts (Triturus cristatus superspecies, Caudata, Salamandridae) from the Balkan Peninsula. J Nat Hist. 2009;43(7-8):469-77.
Lukanov S, Tzankov N. Life history, age and normal development of the Balkan-Anatolian crested newt (Triturus ivanbureschi Arntzen and Wielstra, 2013) from Sofia district. North West J Zool. 2016;12(1):22-32.
Arntzen JW, Wielstra B, Wallis GP. The modality of nine Triturus newt hybrid zones assessed with nuclear, mitochondrial and morphological data. Biol J Linn Soc. 2014;113(2):604-22.
Wielstra B, Arntzen JW. Description of a new species of crested newt, previously subsumed in Triturus ivanbureschi (Amphibia: Caudata: Salamandridae). Zootaxa. 2016;4109(1):73-80.
Džukić G, Vukov TD, Kalezić ML. The tailed amphibians of Serbia. Belgrade: Serbian Academy of Science and Arts; 2016. 393 p.
Wielstra B, McCartney-Melstad E, Arntzen JW, Butlin RK, Shaffer HB. Phylogenomics of the adaptive radiation of Triturus newts supports gradual ecological niche expansion towards an incrementally aquatic lifestyle. Mol Phylogenet Evol. 2019;133:120-7.
Cvijanović M, Ivanović A, Kalezić ML, Zelditch ML. The ontogenetic origins of skull shape disparity in the Triturus cristatus group. Evol Dev. 2014;
Vučić T, Vukov TD, Tomašević Kolarov N, Cvijanović M, Ivanović A. The study of larval tail morphology reveals differentiation between two Triturus species and their hybrids. Amphibia-Reptilia. 2018;39(1):87-97.
Vučić T, Sibinović M, Vukov TD, Tomašević Kolarov N, Cvijanović M, Ivanović A. Testing the evolutionary constraints of metamorphosis: The ontogeny of head shape in Triturus newts. Evolution. 2019;73(6):1253-64.
Prokić MD, Despotović SG, Vučić TZ, Petrović TG, Gavrić JP, Gavrilović BR, Radovanović T, Saičić Z. Oxidative cost of interspecific hybridization: a case study of two Triturus species and their hybrids. J Exp Biol. 2018;221(19):jeb182055.
Cvijanović M, Ivanović A, Kolarov NT, Džukić G, Kalezić ML. Early ontogeny shows the same interspecific variation as natural history parameters in the crested newt (Triturus cristatus superspecies) (Caudata, Salamandridae). Contrib to Zool. 2009;78(2):43-50.
Vukov TD, Cvijanović M, Wielstra B, Kalezić ML. The roles of phylogeny and climate in shaping variation in life-history traits of the newt genus Triturus (Caudata, Salamandridae). Ann Zool Fennici. 2014;51(5):445-56.
Wielstra B, Arntzen JW. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models. BMC Evol Biol. 2012;12(1):1.
Wielstra B, Burke T, Butlin RK, Arntzen JW. A signature of dynamic biogeography: enclaves indicate past species replacement. Proc R Soc B Biol Sci. 2017;284(1868):20172014..
Wielstra B, Arntzen JW. Kicking Triturus arntzeni when it’s down: large-scale nuclear genetic data confirm that newts from the type locality are genetically admixed. Zootaxa. 2014;3802(3):381.
Arntzen JW, Üzüm N, Ajduković MD, Ivanović A, Wielstra B. Absence of heterosis in hybrid crested newts. PeerJ. 2018;6:e5317.
Wielstra B, Sillero N, Vörös J, Arntzen JW. The distribution of the crested and marbled newt species (Amphibia: Salamandridae: Triturus) - an addition to the New Atlas of Amphibians and Reptiles of Europe. Amphibia-Reptilia. 2014;35(3):376-81.
Denoël M, Hervant F, Schabetsberger R, Joly P. Short- and long-term advantages of an alternative ontogenetic pathway. Biol J Linn Soc. 2002;77(1):105-12.
Bǎncilǎ RI, Hartel T, Plǎiaşu R, Smets J, Cogǎlniceanu D. Comparing three body condition indices in amphibians: A case study of yellow-bellied toad Bombina variegata. Amphib Reptil. 2010;31(4):558-62.
Furtula M, Ivanović A, Džukić G, Kalezić ML. Egg size variation in crested newts from the western Balkans (Caudata: Salamandridae: Triturus cristatus superspecies). Zool Stud. 2008;47(5):585-90.
Cogălniceanu D, Buhaciuc E, Tudor M, Rosioru D. Is reproductive effort environmentally or energetically controlled? The case of the Danube crested newt (Triturus dobrogicus). Zoolog Sci. 2013;30(11):924-8.
Arntzen JW, Teunis SFM. A six year study on the population dynamics of the crested newt Triturus cristatus following the colonization of a newly created pond. Herpetol J. 1993;3:99-110.
Wielstra B, Litvinchuk SN, Naumov B, Tzankov N, Arntzen JW. A revised taxonomy of crested newts in the Triturus karelinii group (Caudata, Salamandridae), with the description of a new species. Zootaxa. 2013;3682(3):441-53.
Light LE, Bogart JP. Embryonic development and temperature tolerance in diploid and polyploid salamanders (genus Ambystoma). Am Midl Nat. 1989;122(2):401-7.
Griffiths RA, Wijer P de. Differential effects of pH and temperature on embryonic development in the British newts (Triturus). J Zool. 1994;234(4):613-22.
Kurdíková V, Smolinský R, Gvoždík L. Mothers matter too: Benefits of temperature oviposition references in Newts. PLoS One. 2011;6(8):e23842.
Smith GD, Hopkins GR, Mohammadi S, M. Skinner H, Hansen T, Brodie ED, French SS. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa). J Therm Biol. 2015;51:89-95.
Tóth Z. Context-dependent plastic response during egg-laying in a widespread newt species. PLoS One. 2015;10(8):1-18.
Adams MJ, Schindler DE, Bury BR. Association of amphibians with attenuation of ultraviolet-b radiation in montane ponds. Oecologia. 2001;128(4):519-25.
Kaplan RH. The implications of ovum size variability for offspring fitness and clutch size within several populations of salamanders (Ambystoma). Evolution. 1980;34(1):51-64.
Palen WJ, Williamson CE, Clauser AA, Schindler DE. Impact of UV-B exposure on amphibian embryos: Linking species physiology and oviposition behaviour. Proc R Soc B Biol Sci. 2005;272(1569):1227-34.
Dvořák J, Gvoždík L. Adaptive accuracy of temperature oviposition preferences in newts. Evol Ecol. 2010;24(5):1115-27.
Reyer HU, Frei G, Som C. Cryptic female choice: Frogs reduce clutch size when amplexed by undesired males. Proc R Soc B Biol Sci. 1999;266(1433):2101-7.
Litvinchuk SN, Rosanov JM, Borkin LJ. Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela, Amphibia). Genome. 2007;50(4):333-42.
Mettouris O, Dalmyras D, Giokas S. Influence of temperature on female, embryonic and hatchling traits in syntopic newts, Ichthyosaura alpestris and Lissotriton vulgaris. J Therm Biol. 2017;63:24-30.
Downloads
Published
How to Cite
Issue
Section
License
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.