The effects of biocides on the growth of aerophytic green algae (Chlorella sp.) isolated from a cave environment
DOI:
https://doi.org/10.2298/ABS210321027NKeywords:
biofilms, biocides, Chlorella sp., green algae, lampenfloraAbstract
Paper description:
- Lampenflora communities have a negative impact on caves and can cause biodeterioration.
- Hydrogen peroxide has been used for lampenflora removal but other biocides have not been utilized in cave environments. This study explored the effects of hydrogen-peroxide, a commercial solution containing salicylic acid and a product containing chlorine dioxide, on green algae growth under laboratory conditions, by determining chlorophyll a concentration before and after treatment.
- All three biocides prevented green algae growth, with chlorine dioxide being the most effective.
- Further study is necessary to assess the effects of biocides on limestone and cave environments.
Abstract: Lampenflora communities of bacteria, cyanobacteria, algae, mosses and lichens colonize illuminated show-caves as a consequence of disturbances to the caves’ ecological equilibrium. These communities have unesthetic impacts and can cause the biodeterioration of limestone. A 15% hydrogen peroxide solution was proposed for use as an ecological agent for the safe removal of these microorganisms. This study tested the effects of three different biocides (hydrogen peroxide, a commercial solution containing salicylic acid and a product containing chlorine dioxide as the active component), on the growth of green algae (Chlorella sp.), which are frequently encountered in lampenflora communities. Chlorella sp. was treated with the biocides under laboratory condition, and chlorophyll a (Chl a) concentrations were measured 1 h, 3 days, 7 days and 10 days after treatment. The change in Chl a concentration was compared to the untreated control group at each time point. All three biocides prevented the growth of green algae and the product containing chlorine dioxide appeared to be the most effective growth inhibitor. Hydrogen peroxide is known to suppress lampenflora growth in caves, and further studies on other biocides remain necessary to identify a solution that is both ecologically safe and economically feasible.
Downloads
References
Cigna A, Forti P. Caves: The most important geotouristic feature in the world. Tourism Karst Areas. 2013;6:9-26.
Bastian F, Alabouvette C. Lights and shadows on the conservation of a rock art cave: The case of Lascaux Cave. Int J Speleol. 2009;38(1):55-60. https://doi.org/10.5038/1827-806x.38.1.6
Jimenez SC. Microbiological and environmental issues in show caves. World J Microbiol Biotechnol. 2012;28:2453-64.
Hajdu L. The Flora of Hungarian Caves. Karszt és Barlang. 1977;Spec.Issue:39-42.
Abdulin ShR. Effect of Illumination on the Distribution of Phototrophic Organisms in the Entrance Part of the Shul’ganTash Cave. RussJ Eco. 2011;42:249-51.
Cigna AA. Tourism and show caves. Zeitschrift für Geomorphologie. 2016;60(2):217-33. https://doi.org/10.1127/zfg_suppl/2016/00305
Popović S, Subakov Simić G, Stupar M, Unković N, Krunić O, Savić Ž, Ljaljević Grbić M. Cave biofilms: characterization of phototrophic cyanobacteria and algae and chemotrophic fungi from three caves in Serbia. J C K Studies. 2017;79(1):10-23. https://doi.org/10.4311/2016mb0124
Nikolić N, Zarubica N, Gavrilović B, Predojević D, Trbojević I, Subakov Simić G, Popović S. Lampenflora and the entrance biofilm in two show caves: comparison of microbial community, environmental, and biofilm parameters. JCK Studies. 2020;82(2):69-81. https://doi.org/10.4311/2018ex0124
Rugnini L, Migliore G, Tasso F, Ellwood NTW, Sprocati AR, Bruno L. Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). Appl Sci. 2020;10(18):6584. https://doi.org/10.3390/app10186584
Heaton T. Caves, a tremendous range in energy environments on Earth. Nat Speleol Society News. 1986;44:301-4.
Gillieson SD. Management of caves. In: van Beynen EP, editor. Karst Management. London: Springer; 2011. p. 141-58.
De Freitas CR, Littlejohn RN. Cave climate: assessment of heat and moisture exchange. Int J Climatol. 1987;7(6):553-69. https://doi.org/10.1002/joc.3370070604
Mulec J, Kosi G. Lampenflora algae and methods of growth control. JCK Studies. 2009;71(2):109-15.
Mulec J, Kobešova S. Diversity of Bryophytes in show caves in Slovenia and relation to light intensities. Acta Carsologica. 2010;39(3):587-96. https://doi.org/10.3986/ac.v39i3.86
Dobat K. Flore de la lumiéreartificiélle (lampenflora-maladieverte). In: Juberthie C, Decu V, editors. Encyclopaedia Biospeleologica, Tome 2. Moulis-Bucarest: Société de Biospéologie; 1998. p. 1325-35.
Mazina SE, Severin AV. Development of a method for rehabilitation of anthropogenically transformed underground ecosystems: The example of the New Athos Cave. Ekol Khim. 2007;16:175-81.
Cigna A. The problem of Lampenflora in Show Caves. In: Bella P, Gazík P, editors. Proceedings of the 6th ISCA Congress. Slovakia: Slovak Caves Administration; 2011. p. 201-05.
Brunet J, Vidal P, Vouvé J. Concervation de l’Art Rupestre.Paris:UNESCO; 1985. p 107.
Macedo FM, Miller ZA, Dionísio A, Saiz-Jimenez C. Biodiversity of cyanobacteria and green algae on monument in the Mediterranean Basin: an overview. Microbiology. 2009;155(11):3476-90. https://doi.org/10.1099/mic.0.032508-0
Pfendler S, Munch T, Bousta F, Alaoui-Sosse L, Aleya L, Alaoui-Sosse B. Bleaching of biofilm-forming algae induced by UV-C treatment: a preliminary study on chlorophyll degradation and its optimization for an application on cultural heritage. Env Sci Poll Res. 2018;25:14097-105. https://doi.org/10.1007/s11356-018-1654-6
Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B, Sanchez-Moral S, Saiz-Jimenez C. Pathogenic and opportunistic microorganisms in caves. Int J Speleol. 2010;39(1):15-24. https://doi.org/10.5038/1827-806x.39.1.2
Urzi C, De Leo F. Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int Biodeterior Biodegradation. 2007;60(1):25-34. https://doi.org/10.1016/j.ibiod.2006.11.003
Bromblet P. Guide “Guide Altération de la Pierre”. Association Medistone; 2010. 32 p.
Ash J, Ashton K, Bonny A, Dimond P, Hendy C, May B, Nelson C, Wheele D, Williams P. Report on the conservation of Waitomo caves. N Zealand Speleol Bull. 1975;5:373-96.
Hazslinszky T. Übersicht der Lampenflorabekämpfung in Ungarn. In: Hazslinszky T, editor. International Conference on Cave Lighting. Budapest: Hungarian Speleological Society; 2002. p. 41-50.
Grobbelaar JU. Lithophytic algae: A major threat to the karst formation of show caves. J Appl Phycol. 2000;12(3):309-15.
Zelinka J, Hebelka J, Fillo M, Novomesky J. Illumination reconstruction in Slovakian show caves in relation to ‘‘lampflora’’ creation prevention. In: Hazslinszky T, editor. International Conference on Cave Lighting. Budapest: Hungarian Speleological Society; 2002. p. 151-57.
Faimon J, Stelcl J, Kubesova S, Zimȧk J. Environmentally acceptable effect of hydrogen peroxide on cave ‘‘lamp-flora’’, calcite speleothems and limestones. Enviro Pollution. 2003;122(3):417-22. https://doi.org/10.1016/s0269-7491(02)00309-3
Trinh DA, Trinh QH, Tran N, Guinea JG, Mattey D. Eco-friendly remediation of lampenflora on speleothems in tropical karst caves. J C K Studies. 2018;80(1):1−12. https://doi.org/10.4311/2017es0101
Borderie F, Laurence A, Naoufal R, Faisl B, Geneviève B. UV-C irradiation as a tool to eradicate algae in caves. Int Biodeterior Biodegradat. 2011;65:579-84. https://doi.org/10.1016/j.ibiod.2011.02.005
Borderie F, Tête N, Cailhol D, Alaoui-Sehmer L, Bousta F, Rieffel D, Aleya L, Alaoui-Sossé B. Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci Total Enviro. 2014;484:43-52. https://doi.org/10.1016/j.scitotenv.2014.03.043
Pfendler S, Einhorn O, Karimi B, Bousta F, Caihol D, Alaoui-Sossé L, Alaoui-Sossé B, Aleya L. UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments. Environ Sci Pollut Res. 2017;24(31):24611-23. https://doi.org/10.1007/s11356-017-0143-7
Pfendler S, Alaoui-Soussé B, Alaoui-Soussé L, Bousta F, Aleya L. Effects of UV-C radiation on Chlorella vulgaris, a biofilm-forming alga. J Applie Phycol. 2018;30:1607-16. https://doi.org/10.1007/s10811-017-1380-3
Lazarević R. Kras Dubašnice, Gornjana i Majdanpeka. Beograd: Srpsko geografsko društvo; 1998. 100 p. Serbian.
Nikolić N, Popović S, Vidaković D, Subakov Simić G, Krizmanić J. Genus Humidophila from caves in Serbia with an improved detailed description of rare H. brekkaensoides. Arch Biol Sci. 2020;72(2):279-89. https://doi.org/10.2298/abs200228022n
Gärtner G, Stoyneva PM, Mancheva DA, Uzunov AB. A new method in collection and cultivation of aerophytic and endolithic algae. Ber Nat Med Verein Innsbruck. 2010;96:27-34.
Ettl H, Gärtner G. Syllabus der Boden-, Luft-, und Flechtenalgen. 2nd ed. Berlin: Springer Spectrum; 2014. 773 p. https://doi.org/10.1007/978-3-642-39462-1
John DM, Whitton BA, Brook AJ. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge, UK: Cambridge University Press; 2003. 702 p. https://doi.org/10.1002/aqc.579
Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiology. 1979;111(1):1-61. https://doi.org/10.1099/00221287-111-1-1
Aleya L, Dauta A, Reynolds SC. Endogenous regulation of the growth-rate responses of a spring-dwelling strain of freshwater alga, Chlorella minutissima, to light and temperature. Eur J Protistol. 2011;47:239-44. https://doi.org/10.1016/j.ejop.2011.05.003
Popović S, Subakov Simić G, Stupar M, Unković N, Predojević D, Jovanović J, Ljaljević Grbić M. Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int J Speleol. 2015;44(2):141-49. https://doi.org/10.5038/1827-806x.44.2.4
42.Xlstat.com:XLSTAT statistical and data analysis solution [Internet]. New York: Addinsoft; [cited 2020 May 26]. Available from: https://www.xlstat.com.
Ter Braak CJF, Šmilauer P. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca, USA: Microcomputer Power; 2012. 496 p.
Claudi R, Evans DW. Chemical addition strategies for zebra mussel (Dreissena polymorpha) control in once-through service water systems. In: Nalepa TF, Schloesser DW, editors. Zebra Mussels: Biology, Impacts, and Control. Boca Raton: Lewis Publishers; 1993. p. 563-73. https://doi.org/10.1201/b15437-45
Draäbkova AM, Admiral W†, Marsälek B‡. Combined Exposure to Hydrogen Peroxide and Lights Selective Effects on Cyanobacteria, Green Algae, and Diatoms. Environ Sci Technol. 2007;41(1):309-14. https://doi.org/10.1021/es060746i
Russell AD. Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemotherapy. 2003;52(5):750-63. https://doi.org/10.1093/jac/dkg422
Zhou QLL, Huang L, Guo L, Song L. Combining hydrogen peroxide addition with sunlight regulation to control algal blooms. Environ Sci Pollut Res. 2017;25(3):2239-47. https://doi.org/10.1007/s11356-017-0659-x
Burson A, Matthijs HCP, de Bruijne W, Talens R, Hoogenboom R, Gerssen A, Visser MP, Stomp M, Steur K, van Scehpinngen Y, Huisman J. Termination of a toxic Alexandrium bloom with hydrogen peroxide. Harmful Algae. 2014;31:125-35. https://doi.org/10.1016/j.hal.2013.10.017
Arberg B. Plant growth regulators. Monosubstituted benzoic acid. Swedish J Agricult Res. 1981;11:93-105.
Hayat Q, Hayat S, Irfan, M. Ahmad A. Effect of exogenous salicylic acid under changing environment: A review. Environ Experime Bot. 2010;68(1):14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005
Yousuf DYM. Effects sprayed solution of salicylic acid to prevent of wilt disease caused by Fussarium oxysporium. J Phys Conf Ser. 2018;1003(1):1-6. https://doi.org/10.1088/1742-6596/1003/1/012001
Madan KR, Levitt J. A review of toxity from topical salicylic acid preparations. J Am Acad Dermatol. 2014;70(4):788-92.
Czerpak R, Bajguz A, Gromek M, Kozlowksa G, Nowka I. Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck. Acta Phycologie Plantaru. 2002;24:45. https://doi.org/10.1007/s11738-002-0020-x
Gao ZQ, Meng CX, Diao YY. The effect of extraneous salicylic acid on astaxanthin accumulation of alga Haematoccus pluvialis. Fish Sci. 2007;26:377-80. Chinese.
Wu G, Gao Z, Du H, Lin B, Yan Y, Li G, Guo Y, Fu S, Wei G, Wang M, Cui M, Meng C. The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains. J Gen Appl Microbiol. 2018;64(1):42-9. https://doi.org/10.2323/jgam.2017.06.001
Xu Q, Shi M, Wang S, QingY. Study on the effect of exogenous salicylic acid on algae growth in the environment. E3S Web Conf. 2020;165:02001. https://doi.org/10.1051/e3sconf/202016502001
Ingols RS, Ridenourm GM. Chemical properties of chlorine dioxide in water treatment. J Am Water Works Assoc. 1948;40:1207-27. https://doi.org/10.1002/j.1551-8833.1948.tb15069.x
Benarde MA, Israel BM, Olivieri VP, Granstrom M. Efficiency of chlorine dioxide as a bactericide. Appl Microbiology. 1965;13(5):776-80. https://doi.org/10.1128/am.13.5.776-780.1965
Benarde MA, Snow WB, Olivieri VP, Davidson B. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl Microbiol. 1967;15(2):257-65. https://doi.org/10.1128/am.15.2.257-265.1967
Hebelka J. Methodology of lampenflora removal in caves accessible for tourists. Průhonice : Cave Administration of the Czech Republic; 2014. 15 p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Archives of Biological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.