Chidamide modulates proliferation, migration and apoptosis of human tongue squamous carcinoma SCC9 cells through multiple signaling pathways

Authors

  • Hongyao Huang Suizhou Hospital, Hubei University of Medicine, 441300 Suizhou, Hubei, P.R. China
  • Tao Deng Suizhou Hospital, Hubei University of Medicine, 441300 Suizhou, Hubei, P.R. China
  • Jin Qian Suizhou Hospital, Hubei University of Medicine, 441300 Suizhou, Hubei, P.R. China
  • Jie Hu Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065 Wuhan, Hubei, P.R. China
  • Yangyang Zhu Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065 Wuhan, Hubei, P.R. China
  • Min Tian Suizhou Hospital, Hubei University of Medicine, 441300 Suizhou, Hubei, P.R. China
  • Xiaohong Guo Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, P.R.China
  • lili lu Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, 430065 Wuhan, Hubei, P.R. China https://orcid.org/0000-0002-3961-7214

DOI:

https://doi.org/10.2298/ABS210815035H

Keywords:

Chidamide, tongue squamous cell carcinoma, apoptosis, epigenetic modulation, cell migration

Abstract

Paper description:

  • The prognosis of current treatment of tongue squamous cell carcinoma (TSCC) is not optimistic. Development of new pharmacological agents targeting TSCC is a priority.
  • The anti-tumor effect of chidamide, a histone deacetylase inhibitor, was examined in vitro in TSCC SCC9 cells using cell viability and wound healing assays, flow cytometry analysis and Western blotting.
  • Chidamide inhibited cell viability and migration through ERK, mTOR and E-cadherin It induced apoptosis via the Bcl-2/caspase-3 pathway.
  • Chidamide has the potential to be developed into a new therapeutic agent for TSCC treatment.

Abstract: Chidamide, a histone deacetylase (HDAC) inhibitor, displays antitumor activities in different tumor cells. Tongue squamous cell carcinoma (TSCC) is the most prevalent oral cavity malignancy with a high incidence and a high mortality rate. We describe the antitumor effects of chidamide on human TSCC SCC9 cells, which has not been reported before. Cell viability and wound healing assay and flow cytometry analysis were used to determine the proliferation, migration, cell cycle and apoptosis of chidamide-treated SCC9 cells in vitro. Western blotting was used to detect relative changes in protein levels. Our results reveal that chidamide inhibits SCC9 cell proliferation by decreasing ERK1/2 and mTOR phosphorylation and arresting the cell cycle in G0/G1 phase. Chidamide decreased cell migration in dose- and time-dependent manner by increasing E-cadherin expression. Chidamide induced SCC9 cells apoptosis by increasing the level of cleaved caspase-3 and decreasing the expression of Bcl-2. To sum up, chidamide displayed potent antitumor effects on SCC9 cells through multiple signaling pathways and has the potential to be developed as a new therapeutic agent to treat TSCC.

Downloads

Download data is not yet available.

References

Liu L, Chen J, Cai X, Yao Z, Huang J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg Onocl. 2019;31:90-97. https://doi.org/10.1016/j.suronc.2019.09.001

Zhang H, Chen W, Fu X, Su X, Yang A. CBX3 promotes tumor proliferation by regulating G1/S phase via p21 down regulation and associates with poor prognosis in tongue squamous cell carcinoma. Gene. 2018;654: 49-56. https://doi.org/10.1016/j.gene.2018.02.043

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30. https://doi.org/10.3322/caac.21387

Li Z, Wang Y, Qiu J, Li Q, Yuan C, Zhang W, Wang D, Ye J, Jiang H, Yang J, Cheng J. The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget. 2013;4(12):2532-49. https://doi.org/10.18632/oncotarget.1503

Yang W, Sun Z, Hua C, Wang Q, Xu W, Deng Q, Pan Y, Lu L, Jiang S. Chidamide, a histone deacetylase inhibitor-based anticancer drug, effectively reactivates latent HIV-1 provirus. Microbes Infect. 2018;20:626-34. https://doi.org/10.1016/j.micinf.2017.10.003

Gu R, Liu T, Zhu X, Gan H, Wu Z, Li J, Zheng Y, Dou G, Meng Z. Development and validation of a sensitive HPLC-MS/MS method for determination of chidamide (epidaza), a new benzamide class of selective histone deacetylase inhibitor, in human plasma and its clinical application. J Chromatogr B Anal Technol Biomed Life Sci. 2015;1000:181-6. https://doi.org/10.1016/j.jchromb.2015.07.001

Sarkar R, Banerjee S, Amin SA, Adhikari N, Jha T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur J Med Chem. 2020;192:112171. https://doi.org/10.1016/j.ejmech.2020.112171

Liu L, Chen B, Qin S, Li S, He X, Qiu S, Zhao W, Zhao H. A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells. Biochem Bioph Res Co. 2010;392:190-5. https://doi.org/10.1016/j.bbrc.2010.01.011

Liu Z, Ding K, Li L, Liu H, Wang Y, Liu C, Fu R. A novel histone deacetylase inhibitor Chidamide induces G0/G1 arrest and apoptosis in myelodysplastic syndromes. Biomed Pharmacother. 2016;83:1032-7. https://doi.org/10.1016/j.biopha.2016.08.023

Zhou Y, Pan D, Shan S, Zhu J, Zhang K, Yue X, Nie L, Wan J, Lu X, Zhang W, Ning Z. Non-toxic dose chidamide synergistically enhances platinum-induced DNA damage responses and apoptosis in non-small-cell lung cancer cells. Biomed Pharmacother. 2014;68(4):483-91. https://doi.org/10.1016/j.biopha.2014.03.011

Wang H, Guo Y, Fu M, Liang X, Zhang X, Wang R, Lin C, Qian H. Antitumor activity of Chidamide in hepatocellular carcinoma cell lines. Mol Med Rep. 2012;5(6):1503-8. https://doi.org/10.3892/mmr.2012.858

Gong K, Xie J, Yi H, Li W. CS055 (Chidamide/HBI-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ROS-dependent apoptosis and differentiation in human leukaemia cells. Biochem J. 2012;443(3):735-46. https://doi.org/10.1042/BJ20111685

Xu L, Tang H, Gong X, Xin X, Dong Y, Gao G, Shu M, Chen X. Inducing effect of chidamide on apoptosis of multiple myeloma cells and its relerance to DNA damage response. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23(2):450-4. Chinese. https://doi.org/10.7534/j.issn.1009-2137.2015.02.030

Ning Z, Li Z, Newman MJ, Shan S, Wang X, Pan D, Zhang J, Dong M, Du X, Lu X. Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol. 2012;69(4):901-9. https://doi.org/10.1007/s00280-011-1766-x

Yun F, Cheng C, Ullah S, He J, Zahi MR, Yuan Q. Thioether-based 2-aminobenzamide derivatives: Novel HDAC inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem. 2019;176:195-207. https://doi.org/10.1016/j.ejmech.2019.05.007

Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, Zhao W, Zhang H, Sun X, Yang H, Zhang X, Jin J, Jin Z, Li Z, Qiu L, Dong M, Huang X, Luo Y, Wang X, Wang X, Wu J, Xu J, Yi P, Zhou J, He H, Liu L, Shen J, Tang X, Wang J, Yang J, Zeng Q, Zhang Z, Cai Z, Chen X, Ding K, Hou M, Huang H, Li X, Liang R, Liu Q, Song Y, Su H, Gao Y, Liu L, Luo J, Su L, Sun Z, Tan H, Wang H, Wang J, Wang S, Zhang H, Zhang X, Zhou D, Bai O, Wu G, Zhang L, Zhang Y. Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol. 2017;10(1):69. https://doi.org/10.1186/s13045-017-0439-6

Yu H, Jove R. The STATs of cancer-new molecular targets come of age. Nat. Rev. Cancer. 2004;4(2) 97-105. https://doi.org/10.1038/nrc1275

Chan TA, Wang Z, Dang LH, Vogelstein B, Kinzler KW. Targeted inactivation of CTNNB1 reveals unexpected effects of beta-catenin mutation. Proc Natl Acad Sci USA. 2002;99:8265-70.

https://doi.org/10.1073/pnas.082240999

Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS, Ewald AJ. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573(7774):439-44. https://doi.org/10.1038/s41586-019-1526-3

Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007; 25(1): 84-90. https://doi.org/10.1038/nbt1272

Lee HZ, Kwitkowski VE, Del Valle PL, Ricci MS, Saber H, Habtemariam BA, Bullock J, Bloomquist E, Shen Y, Chen X, Brown J, Mehrotra N, Dorff S, Charlab R, Kane RC, Kaminskas E, Justice R, Farrell AT, Pazdur R. FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin Cancer Res. 2015;21(12):2666-70. https://doi.org/10.1158/1078-0432.CCR-14-3119

Garnock-Jones KP. Panobinostat: first global approval. Drugs. 2015;75(6):695-704. https://doi.org/10.1007/s40265-015-0388-8

Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26(9):1351-6. https://doi.org/10.1038/sj.onc.1210204

Trivedi P, Adhikari N, Amin SA, Jha T, Ghosh B. Design, synthesis and biological screening of 2-aminobenzamides as selective HDAC3 inhibitors with promising anticancer effects. Euro J Pharm Sci. 2018;124:165-81. https://doi.org/10.1016/j.ejps.2018.08.030

Liu T, Guan F, Wang Y, Zhang Z, Li Y, Cui Y, Li Z, Liu H, Zhang Y, Wang Y, Ma S. Ms-275 combined with cisplatin exerts synergistic antitumor effects in human esophageal squamous cell carcinoma cells. Toxicol Appl Pharmacol. 2020;395:114971. https://doi.org/10.1016/j.taap.2020.114971

Burris HA 3rd. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013;71(4):829-42. https://doi.org/10.1007/s00280-012-2043-3

Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T, Martinelli G, Conte R, Cocco L, McCubrey JA, Martelli AM. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia. 2007;21(3):427-38. https://doi.org/10.1038/sj.leu.2404523

Li S, Chien C, Huang W, Luo S, Su Y, Tien W, Lan Y, Chen C. Prognostic significance and function of mammalian target of rapamycin in tongue squamous cell carcinoma. Sci Rep. 2017;7(1):8178. https://doi.org/10.1038/s41598-017-08345-8

Liao Y, Kim C, Yen Y. Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head Neck Oncol. 2011;3(1):22. https://doi.org/10.1186/1758-3284-3-22

Cui C, Zhou X, Zhang W, Qu Y, Ke X. Is β-Catenin a Druggable Target for Cancer Therapy? Trends Biochem Sci. 2018;43(8):623-34. https://doi.org/10.1016/j.tibs.2018.06.003

Cao L, Zhao S, Yang Q, Shi Z, Liu J, Pan T, Zhou D, Zhang J. Chidamide Combined With Doxorubicin Induced p53-Driven Cell Cycle Arrest and Cell Apoptosis Reverse Multidrug Resistance of Breast Cancer. Front Oncol. 2021;11:614458. https://doi.org/10.3389/fonc.2021.614458

Downloads

Published

2021-10-12

How to Cite

1.
Huang H, Deng T, Qian J, Hu J, Zhu Y, Tian M, Guo X, lu lili. Chidamide modulates proliferation, migration and apoptosis of human tongue squamous carcinoma SCC9 cells through multiple signaling pathways. Arch Biol Sci [Internet]. 2021Oct.12 [cited 2025Jan.3];73(3):415-23. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/6918

Issue

Section

Articles