Bacteriome composition analysis of selected mineral water occurrences in Serbia
DOI:
https://doi.org/10.2298/ABS211223005SKeywords:
mineral waters, bacterial metabarcoding analysis, 16S rDNA, alpha and beta diversity analysis, physical-chemical analysisAbstract
Paper description:
- The composition of bacterial communities and their physicochemical properties can provide insight into the quality status of mineral waters.
- Bacterial diversity of mineral waters was studied by metabarcoding analysis of 16S rDNA. Physicochemical analysis of mineral waters was performed.
- The study provides first insight into the bacterial diversity of selected occurrences based on metabarcoding analysis. Different physiological groups of bacteria were identified among occurrences characterized by higher levels of total dissolved solids and elevated concentrations of chemical compounds.
- The identified bacteria points to the need for further revitalization of the investigated occurrences.
Abstract: Bacterial metabarcoding analysis by 16S rDNA of five occurrences of mineral waters in Serbia (Torda, Slankamen Banja, Lomnički Kiseljak, Velika Vrbnica and Obrenovačka Banja) indicated the presence of a high percentage of the Proteobacteria phylum, followed by the Bacteroidetes phylum. The families Rhodobacteraceae, Burkholderiaceae, Pseudomonadaceae, Methylophilaceae and Moraxellaceae were the most dominant in the bacterial flora of the selected occurrences, whereas the most represented genera were Acinetobacter, Pseudorhodobacter, Pseudomonas, Limnohabitans, Massilia, Limnobacter and Methylotenera. The presence of coliform bacteria was not detected. Alpha diversity analysis revealed that Slankamen Banja and Lomnički Kiseljak were the richest of the selected occurrences, while the mineral waters of Torda, Velika Vrbnica and Obrenovačka Banja were characterized by similar diversity of bacterial communities determined by beta diversity analysis. Physical-chemical analysis revealed the value of total dissolved solids above 1 g/L, as well as elevated concentrations of some metals and non-metals. The research concluded that specific bacteria contribute to the development of biocorrosion and biofouling processes of water intake facilities. In addition, some of these bacteria might be potential indicators of the organic sources of pollution and/or biotechnological natural remediators in the treatment of contaminated waters.
Downloads
References
Madigan MT, Martinko JM, Stahl DA, Clark DP. Brock biology of microorganisms. 13th ed. San Francisco: Pearson Benjamin-Cummings; 2010. 1043 p.
De Giglio O, Barbuti G, Trerotoli P, Brigida S, Calabrese A, Di Vittorio G, Lovero G, Caggiano G, Uricchio VF, Montagna MT. Microbiological and Hydrogeological Assessment of Groundwater in Southern Italy. Environ Monit Assess. 2016;188:638. https://doi.org/10.1007/s10661-016-5655-y
Keesari T, Ramakumar KL, Prasad MBK, Chidambaram S, Perumal P, Prakash D, Nawani N. Microbial Evaluation of Groundwater and its Implications on Redox Condition of a Multi-Layer Sedimentary Aquifer System. Environ Process. 2015;2:331-46. https://doi.org/10.1007/s40710-015-0067-5
Griebler C, Avramov M. Groundwater Ecosystem Services: a Review. Freshw Sci. 2015;34(1):355-67. https://doi.org/10.1086/679903
Flynn TM, Sanford RA, Bethke CM. Attached and Suspended Microbial Communities in a Pristine Confined Aquifer. Water Resour Res. 2008;44(7):W07425. https://doi.org/10.1029/2007WR006633
Karwautz C. Microbial biofilms in groundwater ecosystems [dissertation]. [München]: Technische Universität; 2015. 146 p.
Goldscheider N, Hunkeler D, Rossi P. Microbial biocenoses in Pristine Aquifers and an Assessment of Investigative Methods. Hydrogeol J. 2006;14(6):926-41. https://doi.org/10.1007/s10040-005-0009-9
Griebler C, Lueders T. Microbial Biodiversity in Groundwater Ecosystems. Freshw Biol. 2009;54(4):649-77. https://doi.org/10.1111/j.1365-2427.2008.02013.x
Šaraba V, Krunić O. Biohidrogeologija na mestima isticanja odabranih pojava termomineralnih voda Srbije. In: Ganić M, editor. Zapisnici Srpskog geološkog društva (za 2017. godinu). Beograd: Srpsko geološko društvo; 2017. p. 69-82.
Cullimore R. Determination of Plugging and Corrosion risks in water wells of all types. Water well rehabilitation workshop protocol 22608. Saskatchewan, Canada: Drycon Bioconcepts Inc; 2008.
Smith SA. Biofouling in Water Wells. In: Lehr JH, Keeley J, editors. Water Encyclopedia: Ground Water. John Wiley & Sons, Inc; 2005. p. 35-8. https://doi.org/10.1002/047147844X.gw76
Jemcev VT, Đukić DA. Mikrobiologija. Beograd: Vojno-izdavački zavod; 2000. 762 p.
Enning D, Garrelfs J. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem. Appl Environ Microbiol. 2014;80(4):1226-36. https://doi.org/10.1128/AEM.02848-13
Blackwood DJ. An Electrochemist Perspective of Microbiologically Influenced Corrosion. Corros Mater Degrad. 2020;1(1):59-76. https://doi.org/10.3390/cmd1010005
Ben Maamar S, Aquilina L, Quaiser A, Pauwels H, Michon-Coudouel S, Vergnaud-Ayraud V, Labasque T, Roques C, Abbott BW, Dufresne A. Groundwater Isolation Governs Chemistry and Microbial Community Structure Along Hydrologic Flowpaths. Front Microbiol. 2015;6:1457. https://doi.org/10.3389/fmicb.2015.01457
Institut za geološko-rudarska istraživanja i ispitivanja nuklearnih i drugih mineralnih sirovina. Geološka Karta 1:500.000 - SFR Jugoslavija [Map]. Beograd: Savezni geološki zavod; 1970.
Filipović B, Krunić O, Lazić M. Regionalna Hidrogeologija Srbije. Beograd: Univerzitet u Beogradu, Rudarsko-geološki fakultet; 2005. 401 p.
Schmieder R, Edwards R. Quality Control and Preprocessing of Metagenomic Datasets. Bioinform. 2011;27(6):863-864. https://doi.org/10.1093/bioinformatics/btr026
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat Methods. 2016;13(7):581-3. https://doi.org/10.1038/nmeth.3869
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Pepiles J, Glöckner FO. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools.Nucleic Acids Res.. 2012;41:590-6. https://doi.org/10.1093/nar/gks1219
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat Biotechnol. 2019;37: 852-7. https://doi.org/10.1038/s41587-019-0209-9
R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing R Core Team, 2018. [cited 2021 Feb 02]. Available from: https://www.R-project.org/
Lê S, Josse J, Husson F. FactoMineR: an R Package for Multivariate Analysis. J Stat Softw. 2008;25(1):1-18. https://doi.org/10.18637/jss.v025.i01
Tomić M, Lazić M. Lekovite vode Vojvodine kao potencijal za razvoj banjskog turizma. Beograd: Zadužbina Andrejević; 2017. 119 p.
Filipović B. Mineralne, termalne i termomineralne vode Srbije. Beograd: Univerzitet u Beogradu, Rudarsko-geološki fakultet; 2003. 278 p.
Al Ashhab A, Sweity A, Bayramoglu B, Herzberg M, Gillor O. Biofouling of Reverse Osmosis Membranes: Effects of Cleaning on Biofilm Microbial Communities, Membrane Performance, and Adherence of Extracellular Polymeric Substances. Biofouling. 2017;33(5):397-409. https://doi.org/10.1080/08927014.2017.1318382
Procópio L. The Era of 'Omics' Technologies in the Study of Microbiologically Influenced Corrosion. Biotechnol Lett. 2020;42(3):341-56. https://doi.org/10.1007/s10529-019-02789-w
Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and Persistent Proteobacteria and Other Gram-Negative Bacteria in Drinking Water. Sci Total Environ. 2017;586:1141-9. https://doi.org/10.1016/j.scitotenv.2017.02.104
Mena KD, Gerba CP. Risk Assessment of Pseudomonas Aeruginosa in Water. Rev Environ Contam Toxicol. 2009;201:71-115. https://doi.org/10.1007/978-1-4419-0032-6_3
Drycon Bioconcepts Inc (DBI). Biological Activity Reaction Tets - BARTTM [Internet]. Saskatchewan, Canada; 2004. [cited 2021 March 5]. 1-57 p. Available from http://www.dbi.ca/BARTs/PDFs/Manual.pdf
Hallbeck L, Pedersen K. The Family Gallionellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer; 2014. p. 853-8. https://doi.org/10.1007/978-3-642-30197-1_398
Teixeira LM, Merquior VLC. The Family Moraxellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer; 2014. p. 443-76. https://doi.org/10.1007/978-3-642-38922-1_245
D'Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Miller AZ, Juardo V, Saiz-Jimenez C, De Waele J, Cappelletti M. Geomicrobiology of a Seawater-Influenced Active Sulfuric Acid Cave. PLoS One. 2019;14(8):e0220706. https://doi.org/10.1371/journal.pone.0220706
Orlygsson J, Kristjansson JK. The Family Hydrogenophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer; 2014. p. 859-68. https://doi.org/10.1007/978-3-642-30197-1_244
Karwautz C, Kus G, Stöckl M, Neu TR, Lueders T. Microbial Megacities Fueled by Methane Oxidation in a Mineral Spring Cave. ISME J. 2018;12(1):87-100. https://doi.org/10.1038/ismej.2017.146
Pohlner M, Dlugosch L, Wemheuer B, Mills H, Engelen B, Reese BK. The Majority of Active Rhodobacteraceae in Marine Sediments Belong to Uncultured Genera: a Molecular Approach to Link Their Distribution to Environmental Conditions. Front Microbiol. 2019;10:659. https://doi.org/10.3389/fmicb.2019.00659
Chen Y, Feng X, He Y, Wang F. Genome Analysis of a Limnobacter sp. Identified in an Anaerobic Methane-Consuming Cell Consortium. Front Mar Sci. 2016;3:257. https://doi.org/10.3389/fmars.2016.00257
Ofek M, Hadar Y, Minz D. Ecology of Root Colonizing Massilia (Oxalobacteraceae). PloS One. 2012;7(7):e40117. https://doi.org/10.1371/journal.pone.0040117
Hahn MW, Kasalický V, Jezbera J, Brandt U, Šimek, K. Limnohabitans Australis sp. nov., Isolated From a Freshwater Pond, and Emended Description of the Genus Limnohabitans. Int J Syst Evol Microbiol. 2010;60:2946-50. https://doi.org/10.1099/ijs.0.022384-0
Lee YM, Yang JY, Baek K, Han SJ, Shin SC, Hwang CY, Hong SG, Lee HK. Pseudorhodobacter Psychrotolerans sp. nov., a Psychrotolerant Bacterium Isolated From Terrestrial Soil, and Emended Description of the Genus Pseudorhodobacter. Int J Syst Evol Microbiol. 2016;66(2):1068-73. https://doi.org/10.1099/ijsem.0.000841
Ahmed I, Yokota A, Fujiwara T. Chimaereicella Boritolerans sp. nov., a Boron-Tolerant and Alkaliphilic Bacterium of the Family Flavobacteriaceae Isolated From Soil. Int J Syst Evol Microbiol. 2007;57(5):986-92. https://doi.org/10.1099/ijs.0.64728-0
Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, Ravin NV, Bonch-Osmolovskaya EA, Kublanov IV. Characterization of Melioribacter Roseus gen. nov., sp. nov., a Novel Facultatively Anaerobic Thermophilic Cellulolytic Bacterium From the Class Ignavibacteria, and a Proposal of a Novel Bacterial Phylum Ignavibacteriae. Environ Microbiol. 2013;15(6):1759-71. https://doi.org/10.1111/1462-2920.12067
Takada K, Shiba T, Yamaguchi T, Akane Y, Nakayama Y, Soda, S, Inoue D, Ike M. Cake Layer Bacterial Communities During Different Biofouling Stages in Full-Scale Membrane bioreactors. Bioresour Technol. 2018;259:259-67. https://doi.org/10.1016/j.biortech.2018.03.051
Li X, Duan J, Xiao H, Li Y, Liu H, Guan F, Zhai X. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. Front Microbiol. 2017;8:1737. https://doi.org/10.3389/fmicb.2017.01737
Su XL, Tian Q, Zhang J, Yuan XZ, Shi XS, Guo RB, Qiu YL. Acetobacteroides Hydrogenigenes gen. nov., sp. nov., an Anaerobic Hydrogen-Producing Bacterium in the Family Rikenellaceae Isolated From a Reed Swamp. Int J Syst Evol Microbiol. 2014;64(9):2986-91. https://doi.org/10.1099/ijs.0.063917-0
Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA. Thermincola Carboxydiphila gen. nov., sp. nov., a Novel Anaerobic, Carboxydotrophic, Hydrogenogenic Bacterium From a Hot Spring of the Lake Baikal Area. Int J Syst Evol Microbiol. 2005;55(5):2069-73. https://doi.org/10.1099/ijs.0.63299-0
Tian R, Ning D, He Z, Zhang P, Spencer SJ, Gao S, Shi W, Wu L, Zhang Y, Yang Y, Adams BG, Rocha AM, Detienne BL, Lowe KA, Joyner DC, Klingeman DM, Arkin AP, Fields MW, Hazen TC, Stahl DA, Alm EJ, Zhou J. Small and Mighty: Adaptation of Superphylum Patescibacteria to Groundwater Environment Drives Their Genome Simplicity. Microbiome. 2020;8(1):51. https://doi.org/10.1186/s40168-020-00825-w
Nierychlo M, Miłobędzka A, Petriglieri F, McIlroy B, Nielsen PH, McIlroy SJ. The Morphology and Metabolic Potential of the Chloroflexi in Full-Scale Activated Sludge Wastewater Treatment Plants. FEMS Microbiol Ecol. 2019;95(2). https://doi.org/10.1093/femsec/fiy228
Li C, Ling F, Zhang M, Liu WT, Li Y, Liu W. Characterization of Bacterial Community Dynamics in a Full-Scale Drinking Water Treatment Plant. J Environ Sci. 2017;51:21-30. https://doi.org/10.1016/j.jes.2016.05.042
Costa OY, Zerillo MM, Zühlke D, Kielak AM, Pijl A, Riedel K, Kuramae EE. Responses of Acidobacteria granulicella sp. WH15 to High Carbon Revealed by Integrated Omics Analyses. Microorganisms. 2020;8(2):244. https://doi.org/10.3390/microorganisms8020244
Griebler C, Avramov M. Groundwater Ecosystem Services: a Review. Freshw Sci. 2015;34(1):355-67. https://doi.org/10.1086/679903
Dong X, Greening C, Brüls T, Conrad R, Guo K, Blaskowski S, Kaschani F, Kaiser M, Laban NA, Meckenstock RU. Fermentative Spirochaetes Mediate Necromass Recycling in Anoxic Hydrocarbon-Contaminated Habitats. ISME J. 2018;12(8):2039-50. https://doi.org/10.1038/s41396-018-0148-3
Islam R, Faysal SM, Amin R, Juliana FM, Islam MJ, Alam J, Nazir Hossain M, Asaduzzaman M. Assessment of pH and Total Dissolved Substances (TDS) in the Commercially Available Bottled Drinking Water. IOSR J Nurs Helathc Res. 2017;6(5):35-40.
Seidel U, Haegele FA, Baumhof E, Jans K, Seidler Y, Kremer D, Bakker SJL, Birringer M, Lüersen K, Bosy-Westphal A, Rimbach G. Boron Contents of German Mineral and Medicinal Waters and Their Bioavailability in Drosophila melanogaster and Humans. Mol Nutr Food Res. 2021;65(15):e2100345. https://doi.org/10.1002/mnfr.202100345
Lima IQ, Ramos OR, Munoz MO, Aguirre JQ, Duwig C, Maity JP., Sracek O, Bhattacharya P. Spatial Dependency of Arsenic, Antimony, Boron and Other Trace Elements in the Shallow Groundwater Systems of the Lower Katari Basin, Bolivian Altiplano. Sci Total Environ. 2020;719:137505. https://doi.org/10.1016/j.scitotenv.2020.137505
Du Y, Ma T, Deng Y, Shen S, Lu Z.. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environ Sci Process Impacts. 2017;19(2):161-72. https://doi.org/10.1039/C6EM00531D
Official Gazzete (2005/2013) Rulebook on quality and other requirements for natural mineral water, natural spring water and table water 53/2005 and 43/2013 [Internet]; 2013 [cited 2021 Apr 15]. Available from: http://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/slscg/ministarstva/pravilnik/2005/53/1/reg
Official Gazzete (1998/1999/2019) Regulation on hygienic quality of drinking water 42/98, 44/99 and 28/019 [Internet]; 2019 [cited 2021 Apr 15]. Available from: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/slsrj/ministarstva/pravilnik/1998/42/2/reg
World Health Organization (WHO). Guidelines for drinking-water quality. 4th ed. Geneva, Switzerland: World Health Organization; 2011. 541 p.
National Primary Drinking Water Regulations (NPDWR) - Microorganisms [Internet]. Washington, D.C: United States Environmental Protection Agency [cited 2021 Apr 13]. Available from: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Microorganisms
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Archives of Biological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.