Anticancer and apoptotic effects of a polysaccharide extract isolated from Lactarius chrysorrheus Fr. in HepG2 and PANC-1 cell lines
DOI:
https://doi.org/10.2298/ABS220803030MKeywords:
Lactarius chrysorrheus, Mushroom, Anticancer, Cytotoxicity, ApoptosisAbstract
Paper description:
- A polysaccharide extract from Lactarius chrysorrheus was isolated.
- Potential anti-cancer activity of the polysaccharide extract was investigated in different cell lines.
- The cytotoxic effect of the extract was estimated, with EC 50 values of 296.42 μg/mL for HepG2 and 444.43 μg/mL in PANC-1 cells, and its apoptotic activity. The polysaccharide extract inhibited cell migration and colony formation and upregulated the expression of CASPASE 3 and CASPASE 9 and downregulated BCL-2 and Bcl-xL genes in HepG2 and PANC-1 cells.
- This study provides insight into the use of polysaccharides of chrysorrheus in the development of novel anticancer agents.
Abstract: Mushrooms are widely used in many cultures for nutritional and health benefits. The Lactarius species is found in the Aegean region of Turkey. Lactarius chrysorrheus Fr. is a wild mushroom that contains a milky juice. In this study, we investigated the in vitro cytotoxic potential and apoptotic effect of the polysaccharide extract prepared from L. chrysorrheus by water extraction and alcohol precipitation using the tetrazolium MTT dye assay, annexin V staining, wound healing and colony formation, and qRT-PCR. The molecular weights of three peaks observed in HPLC chromatograms were calculated as 1869.9, 3043.92 and 16821.47 Da. The extract exhibited cytotoxic activity at 72 h, with an IC50 value of 296.42 μg/mL in HepG2 and 444.43 μg/mL in PANC-1 cells; the extract that was tested on the normal HEK293 cell line exhibited no cytotoxicity. Further, L. chrysorrheus upregulated the expression of CASPASE 3 and CASPASE 9 while downregulating B-cell lymphoma 2 (BCL-2) and B-cell lymphoma-extra large (Bcl-xL) genes, and inhibited cell migration and colony formation in HepG2 and PANC-1 cells. This study provides new insight into the use of the polysaccharide from L. chrysorrheus in the development of novel anticancer agents.
Downloads
References
Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials (Basel). 2021;14(24):7640. https://doi.org/10.3390/ma14247640
You SW, Hoskin RT, Komarnytsky S, Moncada M. Mushrooms as Functional and Nutritious Food Ingredients for Multiple Applications. ACS Food Sci Tech. 2022;2(8):1184–95. https://doi.org/10.1021/acsfoodscitech.2c00107
Rangel-Vargas, E, Rodriguez JA, Domínguez R, Lorenzo JM, Sosa ME, Andrés SC, Rosmini M, Pérez-Alvarez JA, Teixeira A, Santos EM. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods. 2021;10(11):2687. https://doi.org/10.3390/foods10112687
Valverde ME, Hernández-Pérez T, Paredes-López O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int J Microbiol. 2015;(14):376387. https://doi.org/10.1155/2015/376387
Anusiya G, Gowthama PU, Yamini NV, Sivarajasekar N, Rambabu K, Bharath G, Banat F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered. 2021;12(2):11239-68. https://doi.org/10.1080/21655979.2021.2001183
Wang Q, Wang F, Xu Z, Ding Z. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules. 2017;22(6):955. https://doi.org/10.3390/molecules22060955
Anke T. Secondary metabolites from mushrooms. J Antibiot. 2020;(73):655-56. https://doi.org/10.1038/s41429-020-0358-6
Grass J, Pabst M, Kolarich D, Pöltl G, Léonard R, Brecker L, Altmann F. Discovery and structural characterization of fucosylated oligomannosidic N-glycans in mushrooms. J Biol Chem. 2011;286(8):5977-84. https://doi.org/10.1074%2Fjbc.M110.191304
Mwangi RW, Macharia JM, Wagara IN, Bence RL. The antioxidant potential of differentedible and medicinal mushrooms. Biomed Pharmacother. 2022;(147):112621. https://doi.org/10.1016/j.biopha.2022.112621
Podkowa A, Kryczyk-Poprawa A, Opoka W, Muszynska B. Culinary–medicinal mushrooms: a review of organic compounds and bioelements with antioxidant activity. Eur Food Res Technol. 2021;(247):513-33. https://doi.org/10.1007/s00217-020-03646-1
Matuszewska A, Jaszek M, Stefaniuk D, Ciszewski T, Matuszewski Ł. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS One. 2018;13(6):e0197044. https://doi.org/10.1371/journal.pone.0197044
Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1-15. https://doi.org/10.1007/s13205-011-0036-2
Chopra H, Mishra AK, Baig AA, Mohanta TK, Mohanta YK, Baek KH. Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J Fungi. 2021;(7):728. https://doi.org/10.3390/jof7090728
Lamaison JL, Polese JM. The Great Encyclopedia of Mushrooms. HF Ullmann, Köningswinter, Germany. 2008. 49 p.
Phillips R. Mushrooms. MacMillan. 2006. 25 p.
Phillips R. Mushrooms and other fungi of Great Britain and Europe. 1st ed. London: Pan Books Ltd.; 1981.
Verbeken A. Worldwide systematics of Lactarius: a state of art. Micol Vegetazione Mediterr. 2001;16(1):71-88
Leonardi M, Comandini O, Sanjust E, Rinaldi AC. Conservation Status of Milkcaps (Basidiomycota, Russulales, Russulaceae), with Notes on Poorly Known Species. Sustainability. 2021;(13):10365. https://doi.org/10.3390/su131810365
Alli H, Isiloglu M, Solak MH. Macrofungi of Aydın Province, Turkey. Mycotaxon. 2007;99:163-5.
Jo WS, Hossain MA, Park SC. Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology. 2014;42(3):215-20. https://doi.org/10.5941/myco.2014.42.3.215
Bon M, Wilkinson J, Ovenden D. The Mushrooms and Toadstools of Britain and North-Western Europe. Hodder and Stoughton; 1987.
Cui Y, Kim DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol. 2005;(96):79-85. https://doi.org/10.1016/j.jep.2004.08.037
Jeff IB, Li S, Peng X, Kassim MRR, Liu B, Zhou Y. Purification, structural elucidation and antitumor activity of a novel mannogalactoglucan from the fruiting bodies of Lentinus edodes. Fitoterapia. 2013;84, 338-46. https://doi.org/10.1016/j.fitote.2012.12.008
Arslan S, Kocabiyik K, Mutlu D, Semiz G. Assessment of Cytotoxic and Apoptotic Effects of Salvia syriaca L. in Colorectal Adenocarcinoma Cell Line (Caco-2). Iran J Pharm Sci. 2021;20(3):235-42. https://doi.org/10.22037/ijpr.2020.114254.14759.
IC50 Calculator [Internet]. California: AAT Bioquest, Inc.; [cited 2022 Sept 2]. Available from: https://www.aatbio.com/tools/ic50-calculator
Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res. 2021;36(14): 3511-19.https://doi.org/10.1080/14786419.2020.1865954
Meijerman I, Beijnen JH, Schellens JHM. Herb–Drug Interactions in Oncology: Focus on Mechanisms of Induction. The Oncologist. 2006;11(7):742-52. https://doi.org/10.1634/theoncologist.11-7-742
Stamets P, Zwickey H. Medicinal Mushrooms: Ancient Remedies Meet Modern Science. Integr Med (Encinitas). 2014;13(1):46-7.
Varghese R, Dalvi YB. Natural Products as Anticancer Agents. Curr Drug Targets. 2021;22(11):1272-87. https://doi.org/10.2174/1389450121999201230204526
Panda SK, Sahoo G, Swain SS, Luyten W. Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel). 2022;15(2):176. https://doi.org/10.3390/ph15020176
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother. 2021;143:112106. https://doi.org/10.1016/j.biopha.2021.112106
Valverde ME, Hernández-Pérez T, Paredes-López O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387. https://doi.org/10.1155/2015/376387
Kumar K, Mehra R, Guiné RPF, Lima MJ, Kumar N, Kaushik R, Ahmed N, Yadav AN, Kumar H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods. 2021;10(12):2996. https://doi.org/10.3390/foods10122996
Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp Oncol (Pozn). 2012;16(4):285-9. https://doi.org/10.5114/wo.2012.30055
Pandya U, Dhuldhaj U, Sahay NS. Bioactive mushroom polysaccharides as antitumor: an overview. Nat Prod Res. 2019;33(18):2668-80. https://doi.org/10.1080/14786419.2018.1466129
Pk MU, Pervin R, Jahan J, Talukder RI, Ahmed S, Rahman M. Mushroom Polysaccharides: Chemistry and Anticancer Potentials. In: Passari AK, Sánchez S, editors. An Introduction to Mushroom, London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.92293
Jakopovic B, Oršolić N, Kraljević Pavelić S. Antitumor, Immunomodulatory and Antiangiogenic Efficacy of Medicinal Mushroom Extract Mixtures in Advanced Colorectal Cancer Animal Model. Molecules. 2020;25(21):5005. https://doi.org/10.3390/molecules25215005
Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 2016;5(4):80. https://doi.org/10.3390/foods5040080
Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules. 2022;27:4090. https://doi.org/10.3390/molecules27134090
Tsai MY, Hung YC, Chen YH, Chen YH, Huang YC, Kao CW, Su YL, Chiu HH, Rau KM. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC Complement Altern Med. 2016;16(1):322. https://doi.org/ 10.1186/s12906-016-1312-9
Zhang L, Hu Y, Duan X, Tang T, Shen Y, Hu B, Kiu A, Chen H, Li C, Liu Y. Characterization and antioxidant activities of polysaccha‐ rides from thirteen Boletus mushrooms. Int J Biol Macromol 2018;113:1-7. https://doi.org/10.1016/j.ijbiomac.2018.02.084
Zhang HN, Ma HL, Zhou CS, Yan Y, Yin XL, Yan JK. Enhanced production and antioxidant activity of endo‐polysaccha‐ rides from Phellinus igniarius mutants screened by low power He‐Ne laser and ultraviolet induction. Bioact Carbohydr Diet Fibre. 2018;15:30-6. https://doi.org/10.1016/j.bcdf.2016.11.006
Radzki W, Ziaja‐Sołtys M, Nowak J, Topolska J, Bogucka‐Kocka A, Sławinska A, Michalak-Majewska M, Jabłońska-Ryś E, Kuczumow. Impact of processing on polysaccharides obtained from button mushroom (Agaricus bisporus). Int J Food Sci. 2019;5:1405-12. https://doi.org/10.1111/ijfs.14084
Guo L, Xie J, Ruan Y, Zhou L, Zhu H, Yun X, Jiang Y, Lü L, Chen K, Min Z, Wen Y, Gu J. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum. Int Immunopharmacol. 2009;9(10):1175-82. https://doi.org/10.1016/j.intimp.2009.06.005
Guler P, Akata I, Kutluer F. Antifungal activities of Fomitopsis pinicola (Sw.:Fr) Karst and Lactarius vellereus (Pers.) Fr. Afr J Biotechnol. 2009;8(16):3811-13.
Athanasakis G, Aligiannis N, Gonou-Zagou Z, Skaltsounis AL, Fokialakis N. Antioxidant properties of the wild edible mushroom Lactarius salmonicolor. J Med Food. 2013;16(8):760-4. https://doi.org/10.1089/jmf.2012.0297
Stanković M, Mitić V, Jovanović VS, Dimitrijević M, Nikolić J, Stojanović G. Selected fungi of the genus Lactarius - screening of antioxidant capacity, antimicrobial activity, and genotoxicity. J Toxico. Environ Health 2022;85(17):699-714. https://doi.org/10.1080/15287394.2022.2075502
Hou Y, Wang M, Zhao D, Liu L, Ding X, Hou W. Effect on macrophage proliferation of a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray. Oncology Letters. 2019;17:2507-15. https://doi.org/10.3892/ol.2018.9879
Mlinaric A, Kac J, Fatur T, Filipic M. Anti-genotoxic activity of the mushroom Lactarius vellereus extract in bacteria and in mammalian cells in vitro. Pharmazie. 2004;59(3):217-21.
Volcão LM, Halicki PCB, Christ-Ribeiro A, Ramos DF, Badiale-Furlong E, Andreazza R, Bernardi E, Júnior FMRS. Mushroom extract of Lactarius deliciosus (L.) Sf. Gray as biopesticide: Antifungal activity and toxicological analysis. J Toxicol Environ Health. 2022;85(2):43-55. https://doi.org/10.1080/15287394.2021.1970065
Ochoa-Zarzosa A, Vázquez-Garcidueñas MS, Robinson-Fuentes VA, Vázquez-Marrufo G. Antibacterial and cytotoxic activity from basidiocarp extracts of the edible mushroom Lactarius indigo (Schw.) Fr.(Russulaceae). Afr J Pharm Pharmacol. 2011;5(2):281-88. https://doi.org/10.5897/AJPP10.032
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013
Evan G, Vousden K. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342-8. https://doi.org/10.1038/35077213
Mariño G, Kroemer G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res. 2013;23(11):1247-8. https://doi.org/10.1038/cr.2013.115
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175-93. https://doi.org/10.1038/s41580-018-0089-8
Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205-19. https://doi.org/10.1016/s0092-8674(04)00046-7
White K, Arama E, Hardwick JM. Controlling caspase activity in life and death. PLoS Genet. 2017;13(2):e1006545. https://doi.org/10.1371/journal.pgen.1006545
Tomasi S, Lohézic-Le DF, Sauleau P, Bézivin C, Boustie J. Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines. Pharmazie. 2004;59(4):290-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.