Role of adenosine triphosphate and protein kinase A in the force-frequency relationship in isolated rat cardiomyocytes
DOI:
https://doi.org/10.2298/ABS221213004OKeywords:
adenosine triphosphate, protein kinase A, frequency, contraction, Ca2Abstract
Paper description:
- There is insufficient information about the force-frequency relationship in isolated cardiomyocytes and the available information is contradictory. We investigated the force-frequency relationship in contraction and the reasons for the conflicting results.
- Contraction and Ca2+ transients were recorded at 1, 2, 4 Hz excitation frequencies.
- The increase in frequency caused a decrease in the amplitude of contraction, a prolongation of the relaxation time, a slowdown in the relaxation rate, and an increase in the diastolic Ca2+
- Energy deficiency and lack of β-adrenergic system regulation may play a role in these changes.
Abstract: The physiological heart rate of rodents is around 4-6 Hz, although a stimulus frequency of 1 Hz is generally used in isolated cardiomyocytes to study changes in the contraction-relaxation cycle in cardiac muscle physiology and pathophysiology. Our study investigated the contraction parameters in isolated cardiomyocytes at 1, 2 and 4 Hz stimulation, and the roles of ATP and protein kinase A (PKA) in the force-frequency relationship in isolated cardiomyocytes. The contraction of the cell and intracellular Ca2+ changes were recorded simultaneously during cell stimulation by applying pulses of 6-8 V amplitude with frequencies of 1, 2 and 4 Hz. The increase in stimulus frequency caused a significant decrease in the percentage of shortening, relaxation times, slowing of the relaxation rate, and a significant increase in diastolic Ca2+ levels, but had no effect on the contraction rate and Ca2+ transients. Administration of ATP and N6-benzoyladenosine-3ʹ-5ʹ-cyclic monophosphate (6-BNZ-cAMP) caused an increase in contraction amplitude and speed which were proportional to the stimulus frequency but had no effect on the relaxation times. The experimental results show that the force-stimulus frequency has a negative correlation in isolated myocytes and that energy metabolism and the β-adrenergic system may be responsible for this relationship.
Downloads
References
Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol. 2011;51(3):288-98. https://doi.org/10.1016/j.yjmcc.2011.06.012
Franzoso M, Zaglia T, Mongillo M. Putting together the clues of the everlasting neuro-cardiac liaison. Biochim Biophys Acta - Mol Cell Res. 2016;1863(7):1904¬¬-15. https://doi.org/10.1016/j.bbamcr.2016.01.009
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacological Research. 2015;101:30-40. https://doi.org/10.1016/j.phrs.2015.07.001
Queen LR, Ferro A. β-Adrenergic receptors and nitric oxide generation in the cardiovascular system. Cell Mol Life Sci. 2006;63(9):1070-83. https://doi.org/10.1007/s00018-005-5451-2
Cokkinos D V. Introduction to Translational Cardiovascular Research. Cokkinos D V., editor. Introduction to Translational Cardiovascular Research. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-08798-6
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiologic Rev. 2005;85(3):1093-129. https://doi.org/10.1152/physrev.00006.2004
Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiologic Rev. 1992;72(4):881-924. https://doi.org/10.1152/physrev.1992.72.4.881
Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007;356:1140-51. https://doi.org/10.1056/NEJMra063052
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603-16. https://doi.org/10.1161/CIRCRESAHA.113.302095
Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177(3):754-63. https://doi.org/10.1016/j.ijcard.2014.11.014
Rosca MG, Hoppel CL. Mitochondria in heart failure. Cardiovasc Res. 2010;88(1):40-50. https://doi.org/10.1093/cvr/cvq240
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ Res. 2013;113(6):739-53. https://doi.org/10.1161/CIRCRESAHA.113.300308
Mackiewicz U, Lewartowski B. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase. J Physiol Pharmacol. 2006;57(1):3-15.
Bugenhagen SM, Beard DA. Computational analysis of the regulation of Ca 2+ dynamics in rat ventricular myocytes. Phys Biol. 2015;12(5):056008. https://doi.org/10.1088/1478-3975/12/5/056008
Pinz I, Zhu M, Mende U, Ingwall JS. An Improved Isolation Procedure for Adult Mouse Cardiomyocytes. Cell Biochem Biophys. 2011;61(1):93-101. https://doi.org/10.1007/s12013-011-9165-9
Lim CC, Apstein CS, Colucci WS, Liao R. Impaired Cell Shortening and Relengthening with Increased Pacing Frequency are Intrinsic to the Senescent Mouse Cardiomyocyte. J Mol Cell Cardiol. 2000;32(11):2075-82. https://doi.org/10.1006/jmcc.2000.1239
Fauconnier J. Ca2+ current-mediated regulation of action potential by pacing rate in rat ventricular myocytes. Cardiovasc Res. 2003;57(3):670-80. https://doi.org/10.1016/S0008-6363(02)00731-9
Ozturk N, Yaras N, Ozmen A, Ozdemir S. Long-term administration of rosuvastatin prevents contractile and electrical remodelling of diabetic rat heart. J Bioenerg Biomembr. 2013;45(4): 343-52. https://doi.org/10.1007/s10863-013-9514-z
Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75(3):434-42. https://doi.org/10.1161/01.RES.75.3.434
Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D. Chronic Unloading by Left Ventricular Assist Device Reverses Contractile Dysfunction and Alters Gene Expression in End-Stage Heart Failure. Circulation. 2000;102(22):2713-9. https://doi.org/10.1161/01.CIR.102.22.2713
Mubagwa K, Lin W, Sipido K, Bosteels S, Flameng W. Monensin-induced Reversal of Positive Force-Frequency Relationship in Cardiac Muscle: Role of Intracellular Sodium in Rest-dependent Potentiation of Contraction. J Mol Cell Cardiol. 1997;29(3):977-89. https://doi.org/10.1006/jmcc.1996.0342
Milani-Nejad N, Brunello L, Gyorke S, Janssen PML. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae. J Muscle Res Cell Motil. 2014;35(3-4):225-34. https://doi.org/10.1007/s10974-014-9386-9
Layland J, Kentish JC. Positive force- and [Ca 2+ ] i -frequency relationships in rat ventricular trabeculae at physiological frequencies. Am J Physiol Circ Physiol. 1999;276(1):H9-18. https://doi.org/10.1152/ajpheart.1999.276.1.H9
Coutu P, Metzger JM. Optimal Range for Parvalbumin as Relaxing Agent in Adult Cardiac Myocytes: Gene Transfer and Mathematical Modeling. Biophys J. 2002;82(5):2565-79. https://doi.org/10.1016/S0006-3495(02)75599-9
Ohtsuka T, Suzuki M, Hamada M, Hiwada K. Cardiomyocyte Functions Couple with Left Ventricular Geometric Patterns in Hypertension. Hypertens Res. 2000;23(4):345-51. https://doi.org/10.1291/hypres.23.345
Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care. 2009;13(1):R14. https://doi.org/10.1186/cc7712
Liao X, He J, Ma H, Tao J, Chen W, Leng X, Mai W, Zhen W, Liu J, Wang LAngiotensin-converting enzyme inhibitor improves force and Ca 2+ -frequency relationship in myocytes from rats with hart failure. Acta Cardiol. 2007;62(2):157-62. https://doi.org/10.2143/AC.62.2.2020236
Paterek A, Kępska M, Kołodziejczyk J, Mączewski M, Mackiewicz U. The effect of pacing frequency on the amplitude and time-course of cardiomyocyte shortening in isolated rat cardiomyocytes. Post N Med. 2016;XXIX(12B):9-14.
Freeman GL, Little WC, O'Rourke RA. Influence of heart rate on left ventricular performance in conscious dogs. Circ Res. 1987;61(3):455-64. https://doi.org/10.1161/01.RES.61.3.455
Ross J. Adrenergic regulation of the force-frequency effect. In: Heart rate as a determinant of cardiac function. Heidelberg: Steinkopff; 2000. p. 155-65. https://doi.org/10.1007/978-3-642-47070-7_11
Kolwicz SC, Purohit S, Tian R. Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circ Res. 2013;113(5):603-16. https://doi.org/10.1161/CIRCRESAHA.113.302095
Woo SH, Trinh TN. P2 receptors in cardiac myocyte pathophysiology and mechanotransduction. Int J Mol Sci. 2021;22(1):251. https://doi.org/10.3390/ijms22010251
Hopkins S V. The action of ATP in the guinea-pig heart. Biochem Pharmacol. 1973;22(3):335-9. https://doi.org/10.1016/0006-2952(73)90414-0
Hollander PB, Webb L. Effects of Adenine Nucleotides on the Contractility and Membrane Potentials of Rat Atrium. Circ Res. 1957;5(4):349-53. https://doi.org/10.1161/01.RES.5.4.349
Fleetwood G, Gordon JL. Purinoceptors in the rat heart. Br J Pharmacol. 1987;90(1):219-27. https://doi.org/10.1111/j.1476-5381.1987.tb16843.x
Vassort G. Adenosine 5′-Triphosphate: a P2-Purinergic Agonist in the Myocardium. Physiol Rev. 2001;81(2):767- 806. https://doi.org/10.1152/physrev.2001.81.2.767
Dorigo P, Gaion RM, Maragno I. Negative and positive influences exerted by purine compounds on isolated guinea-pig atria. J Auton Pharmacol. 1988;8(3):191-6. https://doi.org/10.1111/j.1474-8673.1988.tb00182.x
Froldi G, Pandolfo L, Chinellato A, Ragazzi E, Caparrotta L, Fassina G. Dual effect of ATP and UTP on rat atria: which types of receptors are involved? Naunyn-Schmiedeberg's Arch Pharmacol. 1994;349(4):381-6. https://doi.org/10.1007/BF00170884
Zaglia T, Mongillo M. Cardiac sympathetic innervation, from a different point of (re)view. J Physiol. 2017;595(12):3919-30. https://doi.org/10.1113/JP273120
Shen MJ, Zipes DP. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circ Res. 2014;114(6):1004-21. https://doi.org/10.1161/CIRCRESAHA.113.302549
Gordan R, Gwathmey JK, Xie L-H. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204. https://doi.org/10.4330/wjc.v7.i4.204
Lissandron V, Zaccolo M. Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling. J Muscle Res Cell Motil. 2006;27(5-7):399-403. https://doi.org/10.1007/s10974-006-9077-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nihal Ozturk, Orhan Erkan, Serkan Uslu, Semir Ozdemir
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.