Genetic characteristics of the Dreissena polymorpha population in Latvia (Lake Rāzna) as part of the European population


  • Akeksandra Morozova Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, Parādes street 1A-202, Daugavpils, Latvia
  • Natalja Shkute Department of Ecology, Institute of Life Sciences and Technologies, Daugavpils University, Parādes street 1A-202, Daugavpils, Latvia



population genetics, Dreissena polymorpha, microsatellites, heterozygosity, Lake Razna


Paper description:

  • Dreissena polymorpha has spread widely throughout the territory of Latvia, negatively impacting biota.
  • We examined the population genetic structure of this invasive species with microsatellites as a molecular marker.
  • Levels of allelic diversity and mean expected heterozygosity were high for the investigated population. High genetic diversity was observed which enables species to adapt to new environments.
  • These results contribute to the identification of effective management strategies for controlling polymorpha.

Abstract: The zebra mussel Dreissena polymorpha is widely distributed in Europe. The expansion of zebra mussels has a negative impact on the native biota of lakes or rivers. Studies of the genetic structure of populations allow the identification of the current state of this invasive species in Latvia as a part of the European population. Despite the increasing importance of microsatellites in studies of population genetics, there is a lack of such data on D. polymorpha in Latvia. The present study investigates the genetic population structure of zebra mussels using six microsatellite loci as follows: DpolA6, Dpo260, Dpo272, Dpo101, Dpo221 and Dpo04 from Lake Rāzna. The microsatellite loci in the investigated population have a high polymorphism and number of alleles. Allelic diversity at all described loci was high, ranging from 4 to 20 alleles per locus. The mean observed heterozygosity was 0.58 and the mean expected heterozygosity was 0.70. A high genetic diversity enables species to adapt to changing environments.


Download data is not yet available.


Peñarrubia L, Vidal O, Viñas J, Pla C, Sanz N. Genetic characterization of the invasive zebra mussel (Dreissena polymorpha) in the Iberian Peninsula. Hydrobiologia. 2016;779(1):227-42.

Zajac K, Bonk M. New records of the invasive bivalve Dreissena polymorpha (Pallas, 1771) (Bivalvia: Dreissenidae) in the Carpathian Mountains, Poland. Folia Malacol. 2019;27(3):231-4.

Birnbaum C. NOBANIS–Invasive alien species fact sheet-Dreissena polymorpha: Online Database of the European Network on Invasive Alien Species-NOBANIS [Internet]. 2011. [cited 2022 Dec16] Available at:

Casagrandi R, Mari L, Gatto M. Modelling the local dynamics of the zebra mussel (Dreissena polymorpha). Freshw.Biol.. 2007;52(7):1223-38.

Protection of habitats and species in Nature Park “Rāzna”. [Internet]. Latvia: Daugavpils University. 2009 [cited 2022 Dec16] Available at:

Žagars M. Pētījuma atskaite Rāzna ezeram. [Internet]. Latvia: Vides Risinājumu institūts. 2016. [cited 2022 Dec16]. Accessed:

Duscher T, Zeveloff IS, Michler F, Nopp-Mayr U. Environmental drivers of raccoon (Procyon lotor L.) occurrences in Austria - established versus newly invaded regions. Arch Biol Sci. 2018;70(1):41-53.

Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O ́Neil P, Parker IM, Thompson JN, Weller SG. The population biology of invasive species. Annu Rev Ecol Syst. 2001;32:305-32.

Andrić A, Kočiš Tubić N, Đan M, Vujić A, Vidaković DO. Assessment of genetic diversity within the Merodon ruficornis species group (Diptera: Syrphidae) by RAPD analysis. Arch Biol Sci. 2017;69(3):553-60.

Lopes-Lima M, Teixera A, Froufe E, Lopes A, Varandas S, Sousa R. Biology and conservation of freshwater bivalves: past, present and future perspectives. Hydrobiologia. 2014;735:1-13.

Peñarrubia L, Sanz N, Pla C, Vidal O, Viñas J. Using Massive Parallel Sequencing for the Development, Validation, and Application of Population Genetics Markers in the Invasive Bivalve Zebra Mussel (Dreissena polymorpha). PLoS One. 2015;10(3):e0120732.

Lawson Handley L.-J, Estoup A, Evans D. M, Thomas C. E, Lombaert E, Facon B, Aebi A, Roy H. E. Ecological genetics of invasive alien species. BioControl. 2011;56:409-28.

Škute N, Oreha J. Evaluation of Some Microsatellite Markers Variability in the Study of Genetic Structure of Vendace (Coregonus albula (L.)) Populations from Latvian Lakes. Contemp Probl Ecol. 2016;9(2):157-65.

Kekkonen J. Temporal Genetic Monitoring of Declining and Invasive Wildlife Populations: Current state and future directions. In: Angelici FM, editor. Problematic Wildlife: A Cross-Disciplinary Approach. Springer; 2016. p. 269-94.

Wilfinger WW, Mackey K, Chomczynski P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques. 1997;22(3):474-6.

Feldheim KA, Brown JE, Murphy DJ, Stepien CA. Microsatellite loci for dreissenid mussels (Mollusca: Bivalvia: Dreissenidae) and relatives: markers for assessing exotic and native populations. Mol Ecol Resour.2011;11:725-32.

Peakall R, Smouse PE. GENALEX6 genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol. 2006;6:228-95.

Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535-8.

Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001-14.

Therriault TW, Weise AM, Higgins SN, Guo Y, Duhaime J. Risk Assessment for Three Dreissenid Mussels (Dreissena polymorpha, Dreissena rostriformis bugensis, and Mytilopsis leucophaeata) in Canadian Freshwater Ecosystems. DFO Can Sci Advis Sec Res Doc. 2012;174:93

Müller JC, Hidde D, Seitz A Canal construction destroys the barrier between major European invasion lineages of the zebra mussel. Proc R Soc B: Biol. 2002;269:1139-42.

Naish KA, Boulding EG. Trinucleotide microsatellite loci for the zebra mussel Dreissena polymorpha an invasive species in Europe and North America. Mol Ecol Notes. 2001;1(4):286-98.

Astanei I, Gosling E, Wilson J, Powell E. Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol. 2005;14:1655-66.

O'Connell M., Wright J.M. Microsatellite DNA in fishes. Rev Fish Biol Fish. 1997;7:331-63.

Chapuis MP, Estoup A. Microsatellite Null Alleles and Estimation of Population Differentiation. Mol Biol Evol.2007:24(3):621-31.

Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR Incidence and origin of ''null ''alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993;52:992-27.

Selkoe K.A, Toonen RJ. Microsatellites for Ecologists: A Practical Guide to Using and Evaluating Microsatellite Markers. Ecol Let. 2006;9(5):615-29.

Ellstrand NC, Elam DR. Population genetic consequences of small population size: Implications for plant conservation. Annu Rev Ecol Evol. 1993;24:217-42.

Thomas EG, Šrut M, Štambuk A, Klobučar GIV, Seitz A, Griebeler EM. Effects of freshwater pollution on the genetics of zebra mussels (Dreissena polymorpha) at the molecular and population level. Biomed Res Int. 2014(3):795481.

Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 1986:5:181-90.




How to Cite

Morozova A, Shkute N. Genetic characteristics of the Dreissena polymorpha population in Latvia (Lake Rāzna) as part of the European population. Arch Biol Sci [Internet]. 2023Jul.3 [cited 2023Dec.10];75(2):133-9. Available from: