Molecular characterization of potentially virulent multidrug-resistant Enterococcus faecalis isolated from acquired urinary tract infections in Egyptian patients
DOI:
https://doi.org/10.2298/ABS230630030AKeywords:
Enterococcus faecalis, multidrug-resistance, virulence determinantsAbstract
Paper description:
- Enterococcus faecalis was detected in 28% urine samples of hospitalized Egyptian patients with urinary tract infections (UTIs). E. faecalis infection was more frequent in females than males and most common in ages ≥41 with increased frequency of infection in rural regions.
- The genes encoding the virulence determinants in E. faecalis strains (cylA, cylB, cylM, gelE, esp, efaA, asa, ace) were determined using real-time PCR.
- Most E. faecalis strains were multidrug resistant and 56% of strains were biofilm-producers.
- Multidrug resistance of E. faecalis, their virulence potential and biofilm formation ability are a public health risk to UTI patients.
Abstract: In this study, 154 urine samples were collected from urinary tract infections (UTIs) of hospitalized patients, with 43 (28%) positive for the presence of Enterococcus faecalis without detection of Enterococcus faecium. Based on the demographic data associated with UTI patients, the prevalence of E. faecalis among females was higher than among males in the age group ≥41 years; cases from rural areas showed higher infection than from urban localities. Patients not treated with antibiotics were 2.8-fold more likely to be infected with E. faecalis than patients who received antibiotics. At the molecular level, the genes encoding the virulence determinants in E. faecalis, including cytolysins (cylA, cylB and cylM), gelatinase (gelE), E. faecalis antigen A (efaA), extracellular surface protein (esp), aggregation substance (asa) and collagen binding adhesion (ace) were determined using SYBR green real-time PCR. Antibiotic susceptibility testing showed that almost all strains were multidrug-resistant, with an average multiple antibiotic resistance (MAR) index of 0.55. The colorimetric microtiter plate assay showed that 56% of the strains were biofilm producers. A significant correlation was observed between strong biofilm formation and the presence of cylB and cylM genes. Multidrug-resistant E. faecalis and its virulence potential and biofilm formation ability pose a risk to UTI patients.
Downloads
References
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84. https://doi.org/10.1038/nrmicro3432
Heidari H, Hasanpour S, Ebrahim-Saraie HS, Motamedifar M. High incidence of virulence factors among clinical Enterococcus faecalis isolates in Southwestern Iran. Infect Chemother. 2017;49(1):51-56. https://doi.org/10.3947/ic.2017.49.1.51
Esmail MAM, Abdulghany HM, Khairy RM. Prevalence of multidrug-resistant Enterococcus faecalis in hospital-acquired surgical wound infections and bacteremia: concomitant analysis of antimicrobial resistance genes. Infect Dis (Auckl). 2019;12:1178633719882929. https://doi.org/10.1177/1178633719882929
Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK; National Healthcare Safety Network Team and Participating National Healthcare Safety Network Facilities. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996-1011. http://dx.doi.org/10.1086/591861. Erratum in: Infect Control Hosp Epidemiol. 2009;30(1):107
Fallah F, Yousefi M, Pourmand MR, Hashemi A, Nazari Alam A, Afshar D. Phenotypic and genotypic study of biofilm formation in enterococci isolated from urinary tract infections. Microb Pathog. 2017;108:85-90. https://doi.org/10.1016/j.micpath.2017.05.014
Dunny GM, Craig RA, Carron RL, Clewell DB. Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid. 1979;2(3):454-65. https://doi.org/10.1016/0147-619x(79)90029-5
Abdelkareem MZ, Sayed M, Hassuna NA, Mahmoud MS, Abdelwahab SF. Multi-drug-resistant Enterococcus faecalis among Egyptian patients with urinary tract infection. J Chemother. 2017;29:74-82. https://doi.org/10.1080/1120009X.2016.1182358
Aleksandrovna ZE, Sergeevna KT, Aleksandrovna ME, Mikhailovich SA, Nikolaevna LV. Phenotypic and genetic diversity of uropathogenic Enterococcus faecalis strains isolated in the Primorsky region of Russia. In: Behzadi P, editor. Microbiology of Urinary Tract Infections - Microbial Agents and Predisposing Factors. London: IntechOpen; 2019. http://dx.doi.org/10.5772/intechopen.80485
Wardal E, Markowska K, Zabicka D, Wróblewska M, Giemza M, Mik E, Polowniak-Pracka H, Wozniak A, Hryniewicz W, Sadowy E. Molecular analysis of vanA outbreak of Enterococcus faecium in two Warsaw hospitals: the importance of mobile genetic elements. Biomed Res Int. 2014;575367. https://doi.org/10.1155/2014/575367
Limoli D, Jones CJ, Wozniak D. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 2015;3(3):0011. https://doi.org/10.1128/microbiolspec.MB-0011-2014
Holmberg A, Rasmussen M. Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics. Diagn Microbiol Infect Dis. 2016;84:19-21. https://doi.org/10.1016/j.diagmicrobio.2015.09.012
Khairy RM, Mahmoud MS, Esmail MAM, Gamil AN. First detection of vanB phenotype-vanA genotype vancomycin-resistant enterococci in Egypt. J Infect Dev Ctries. 2019;13(9):837-42. https://doi.org/10.3855/jidc.10472
Moemen D, Tawfeek D, Badawy W. Healthcare-associated vancomycin resistant Enterococcus faecium infections in the Mansoura University Hospitals intensive care units, Egypt. Braz J Microbiol. 2015; 46(3):777-83. https://doi.org/10.1590/S1517-838246320140403
Osman K, Zolnikov TR, Badr J, Naim H, Hanafy M, Saad A, Elbehiry A. Vancomycin and florfenicol resistant Enterococcus faecalis and Enterococcus faecium isolated from human urine in an Egyptian urban-rural community. Acta Trop. 2020;201:105209. https://doi.org/10.1016/j.actatropica.2019.105209
Said HS, Abdelmegeed ES. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect Drug Resist. 2019;12:1113-25. https://doi.org/10.2147/IDR.S189341
Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of clinical microbiology 7th ed. Washington: ASM Press,; 1999.
Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K. Establishment of an analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR targeting of multicopy rRNA molecules. Appl Environ Microbiol. 2009;75:1961-9. https://doi.org/10.1128/aem.01843-08
Zoletti GO, Siqueira JF Jr, Santos KR. Identification of Enterococcus faecalis in root-filled teeth with or without periradicular lesions by culture-dependent and-independent approaches. J Endod. 2006;32(8):722-6. https://doi.org/10.1016/j.joen.2006.02.001
Jackson CR, Fedorka-Cray PJ, Barrett JB. Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol. 2004;42:3558. https://doi.org/10.1128/JCM.42.8.3558-3565.2004
Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001;67(4):1628-35. https://doi.org/10.1128/AEM.67.4
Lowe AM, Lambert PA, Smith AW. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun. 1995;63(2):703-6. https://doi.org/10.1128/iai.63.2.703-706.1995
Sillanpää J, Xu Y, Nallapareddy SR, Murray BE, Höök M. A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology (Reading). 2004;150(Pt7):2069-78. https://doi.org/10.1099/mic.0.27074-0
Patel R, Uhl JR, Kohner P, Hopkins MK, Cockerill FR 3rd. Multiplex PCR detection of vanA, vanB, vanC-1, and vanC-2/3 genes in enterococci. J Clin Microbiol. 1997;(3):703-7. https://doi.org/10.1128/jcm.35.3.703-707
Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol. 2000;38(8):3092-5. https://doi.org/10.1128/JCM.38.8.3092-3095
CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th edn. CLSI supplement M100S, Wayne, PA.; 2016.
Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165-70. https://doi.org/10.1128/aem.46.1.165-170.1983
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-liljequist, Paterson DL, Rice LB, Stelling J, Stuelens MJ, Vatopoulos A, Weber JT, Monnet DL.Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47):2437. https://doi.org/10.3791/2437
Saxena S, Banerjee G, Garg R, Singh M. Comparative study of biofilm formation in Pseudomonas aeruginosa isolates from patients of lower respiratory tract infection. J Clin Diagn Res. 2014;8(5):DC09-DC11. https://doi.org/10.7860/JCDR/2014/7808.4330
Kolawole AS, Babatunde, SK, Kandaki-Olukemi YT, Durowade K. Prevalence of urinary tract infections (UTI) among patients attending Dalhatu Araf Specialist Hospital, Lafia, Nasarawa State, Nigeria. Int J Med Sci. 2009;1:163-7. https://doi.org/10.5897/IJMMS.9000189
Švec P, Devriese LA. Enterococcus. In: Whitman WB, editor. Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley & Sons; 2015. p. 1-25. https://doi.org/10.1002/9781118960608.gbm00600
Abamecha A, Wondafrash B, Abdissa, A. Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia. BMC Res Notes. 2015;8:213. https://doi.org/10.1186/s13104-015-1200-2
Kafil HS, Mobarez AM. Assessment of biofilm formation by enterococci isolates from urinary tract infections with different virulence profiles. J King Saud Univ Sci. 2015;27:312-7. https://doi.org/10.1016/j.jksus.2014.12.007
Gonzalez TDJ, Pham P, Top J, Willems RJL, van Schaik W, van Passel MWJ, Smidt H. Characterization of Enterococcus isolates colonizing the intestinal tract of intensive care unit patients receiving selective digestive decontamination. Front Microbiol. 2017;8:1596. https://doi.org/10.3389/fmicb.2017.01596
Hussain A, Sohail M, Abbas Z. Prevalence of Enterococcus faecalis mediated UTI and its current antimicrobial susceptibility pattern in Lahore, Pakistan. J Pak Med Assoc. 2016;66:10:1232-6.
Kau AL, Martin SM, Lyon W, Hayes E, Caparon MG, Hultgren SJ. Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice. Infect Immun. 2005;73(4):2461-8. https://doi.org/10.1128/IAI.73.4.2461-2468.2005
Venkatesan KD, Chander S, Loganathan K, Victor K. Study on asymptomatic bacteriuria in diabetic patients. Int J Contemp Med Res. 2017;4:480-3.
de Lastours V, Foxman B. Urinary tract infection in diabetes: epidemiologic considerations. Curr Infect Dis Rep. 2014;16(1):389. https://doi.org/10.1007/s11908-013-0389-2
Geerlings SE, Stolk RP, Camps MJ, Netten PM, Collet TJ, Hoepelman AI. Diabetes women asymptomatic bacteriuria utrecht study group. risk factors for symptomatic urinary tract infection in women with diabetes. Diabetes Care. 2000;23(12):1737-41. https://doi.org/10.2337/diacare.23.12.1737
Duh RW, Singh KV, Malathum K, Murray BE. In vitro activity of 19 antimicrobial agents against enterococci from healthy subjects and hospitalized patients and use of an ace gene probe from Enterococcus faecalis for species identification. Microb Drug Resist. 2001;7:39-46. https://doi.org/10.1089/107662901750152765
Strateva T, Atanasova D, Savov E, Petrova G, Mitov I. Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Braz J Infect Dis. 2016;20:127-33. https://doi.org/10.1016/j.bjid.2015.11.011
Udo EE, Al-Sweih N. Frequency of virulence-associated genes in Enterococccus faecalis isolated in Kuwait hospitals. Med Princ Pract. 2011;20:259-64. https://doi.org/10.1159/000321230
De Vuyst L, Foulquié Moreno MR, Revets H. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol. 2003;84(3):299-318. https://doi.org/10.1016/s0168-1605(02)00425-7
Urusova DV, Merriman JA, Gupta A, Chen L, Mathema B, Caparon MG, Khader SA. Rifampin resistance mutations in the rpoB gene of Enterococcus faecalis impact host macrophage cytokine production. Cytokine. 2022;151:155788. https://doi.org/10.1016/j.cyto.2021.155788
Morris JG Jr, Shay DK, Hebden JN, McCarter RJ Jr, Perdue BE, Jarvis W, Johnson JA, Dowling TC, Polish LB, Schwalbe RS. Enterococci resistant to multiple antimicrobial agents, including vancomycin. Establishment of endemicity in a university medical center. Ann Intern Med. 1995;123(4):250-9. https://doi.org/10.7326/0003-4819-123-4-199508150-00002
Butt T, Leghari MJ, Mahmood A. In-vitro activity of nitrofurantoin in Enterococcus urinary tract infection. J Pak Med Assoc. 2004;54(9):466-9.
Singh D, Umrao PD, Kaistha SD. Multiple antibiotic resistance and biofilm formation of catheter associated urinary tract infection (CAUTI) causing microorganisms. J Bacteriol Mycol. 2018;6:217-21. https://doi.org/10.15406/jbmoa.2018.06.00208
Furtula V, Jackson CR, Farrell EG, Barrett JB, Hiott LM, Chambers PA. Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. Int J Environ Res Public Health. 2013;10(3):1020-36. https://doi.org/10.3390/ijerph10031020
Rathnayake IU, Hargreaves M, Huygens F. Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. Syst Appl Microbiol. 2012;35(5):326-33. https://doi.org/10.1016/j.syapm.2012.05.004
Gagetti P, Bonofiglio L, García Gabarrot G, Kaufman S, Mollerach M, Vigliarolo L, von Specht M, Toresani I, Lopardo HA. Resistance to β-lactams in enterococci. Rev Argent Microbiol. 2019;51(2):179-83. https://doi.org/10.1016/j.ram.2018.01.007
Ono S, Muratani T, Matsumoto T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother. 2005;49(7):2954-8. https://doi.org/10.1128/AAC.49.7.2954-2958.2005
Zhanel GG, Laing NM, Nichol KA, Palatnick LP, Noreddin A, Hisanaga T, Johnson JL, Hoban DJ. Antibiotic activity against urinary tract infection (UTI) isolates of vancomycin-resistant enterococci (VRE): results from the 2002 North American vancomycin resistant enterococci susceptibility study (NAVRESS). J Antimicrob Chemother. 2003;52(3):382-8. https://doi.org/10.1093/jac/dkg352
Korten V, Huang WM, Murray BE. Analysis by PCR and direct DNA sequencing of gyrA mutations associated with fluoroquinolone resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 1994;38(9):2091-4. https://doi.org/10.1128/AAC.38.9.2091
Nakanishi N, Yoshida S, Wakebe H, Inoue M, Mitsuhashi S. Mechanisms of clinical resistance to fluoroquinolones in Enterococcus faecalis. Antimicrob Agents Chemother. 1991;35(6):1053-9. https://doi.org/10.1128/AAC.35.6.1053
Zheng JX, Bai B, Lin ZW, Pu ZY, Yao WM, Chen Z, Li DY, Deng XB, Deng QW, Yu ZJ. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J Med Microbiol. 2018;67(1):60-7. https://doi.org/10.1099/jmm.0.000647
Seno Y, Kariyama R, Mitsuhata R, Monden K, Kumon H. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta Med Okayama. 2005;59(3):79-87. https://doi.org/10.18926/AMO/31979
Hufnagel M, Koch S, Creti R, Baldassarri L, Huebner J. A putative sugar-binding transcriptional regulator in a novel gene locus in Enterococcus faecalis contributes to production of biofilm and prolonged bacteremia in mice. J Infect Dis. 2004;189(3):420-30. https://doi.org/10.1086/381150
Garg S, Mohan B, Taneja N. Biofilm formation capability of enterococcal strains causing urinary tract infection vis-a-vis colonisation and correlation with enterococcal surface protein gene. Indian J Med Microbiol. 2017;35(1):48-52. https://doi.org/10.4103/ijmm.IJMM_16_102
Mohamed JA, Murray BE. Lack of correlation of gelatinase production and biofilm formation in a large collection of Enterococcus faecalis isolates. J Clin Microbiol. 2005;43(10):5405-7. https://doi.org/10.1128/jcm.43.10.5405-5407
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Heba A. Ahmed, Nagham Mostafa, Eman Y.T. Elariny, Rania M. Ahmed
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.