Water emulsion of the essential oil of Nepeta rtanjensis Diklić & Milojević: potential use as a bioherbicide
DOI:
https://doi.org/10.2298/ABS231107041PKeywords:
Nepeta rtanjensis, allelopathy, essential oil, weed, seed germinationAbstract
Paper description:
- Essential oils can be used in allelopathic relationships between plants.
- The effects of a water emulsion of Nepeta rtanjensis Diklić & Milojević essential oil (NrEO) on seed germination and seedling growth of 5 weed species was examined.
- Stellaria media (L.) Vill. was the most sensitive, 0.1% NrEO completely inhibited the germination of Amaranthus retroflexus and Artemisia vulgaris L., and reduced germination of Ambrosia artemisiifolia L. to 50%; Cephalaria transsylvanica (L.) Schrad. ex Roem. & Schult was the most tolerant.
- The water emulsion of the essential oil of rtanjensis could be developed to control invasive and allergenic weeds.
Abstract: Plant protection with natural products is a new trend in environmentally friendly agriculture. Nepeta rtanjensis Diklić & Milojević is an endemic and critically endangered plant species in Serbia. We explored the phytotoxic potential of a water emulsion of Nepeta rtanjensis essential oil (NrEO) with high amounts of trans,cis-nepetalactone on five weeds. The most sensitive was Stellaria media (L.) Vill., as NrEO (from 0.013% to 0.1%) completely inhibited germination. Germination of Amaranthus retroflexus L. and Artemisia vulgaris L. was completely inhibited at the highest applied concentrations of NrEO (0.1%), while Ambrosia artemisiifolia L. germination was reduced to 48% at the same concentration of NrEO. The most tolerant species was Cephalaria transsylvanica (L.) Schrad. ex Roem. & Schult. as the final germination rate at the highest applied concentration of NrEO (0.1%) was 81%, like the control (82%). To our knowledge, this is the first time the interaction of essential oils on the germination and growth of A. vulgaris and C. transsylvanica is reported. The germination dynamics of S. media in pots with soil were significantly inhibited when the soil was initially treated with the highest applied concentration of the NrEO water emulsion (1%). Spraying S. media seedlings with NrEO significantly inhibited growth parameters (shoot height, shoot fresh weight, and the number of nodes) at the higher applied concentrations of NrEO (0.5% and 1%). Therefore, the water emulsion of the essential oil of N. rtanjensis could be potentially developed for use in the control of invasive and allergenic weeds.
Downloads
References
Kudsk P, Streibig JC. Herbicides, a two-edged sword. Weed Res. 2003;43(2):90-102.
https://doi.org/10.1046/j.1365-3180.2003.00328.x
Oerke EC. Crop losses to pests. J Agric Sci. 2006;144(1):31-43.
https://doi.org/10.1017/S0021859605005708
Marin-Morales MA, Ventura-Camargo BDC, Hoshina MM. Toxicity of herbicides: impact on aquatic and soil biota and human health. Herbic Res case Stud use. 2013;10:55851.
https://doi.org/ 10.5772/55851
Dmitrović S, Perišić M, Stojić A, Živković S, Boljević J, Nestorović Živković J, Aničić N, Ristić M, Mišić D. Essential oils of two Nepeta species inhibit growth and induce oxidative stress in ragweed (Ambrosia artemisiifolia L.) shoots in vitro. Acta Physiol Plant. 2015;37(3):64.
https://doi.org/10.1007/s11738-015-1810-2
Bailey KL. The bioherbicide approach to weed control using plant pathogens. In: Integrated Pest Management. Elsevier; 2014. p. 245–66.
https://doi.org/10.1016/B978-0-12-398529-3.00014-2
Santonja M, Bousquet-Mélou A, Greff S, Ormeño E, Fernandez C. Allelopathic effects of volatile organic compounds released from Pinus halepensis needles and roots. Ecol Evol. 2019;9(14):8201-13.
https://doi.org/10.1002/ece3.5390
Xie Y, Tian L, Han X, Yang Y. Research advances in allelopathy of volatile organic compounds (VOCs) of plants. Horticulturae. 2021;7(9):278.
https://doi.org/10.3390/horticulturae7090278
Zeng R Sen, Mallik AU, Luo SM. Allelopathy in sustainable agriculture and forestry. New York: Springer-Verlag; 2008.
https://doi.org/10.1007/978-0-387-77337-7
Nestorović J, Mišić D, Šiler B, Soković M, Glamočlija J, Ćirić A, Maksimović V, Grubišić D. Nepetalactone content in shoot cultures of three endemic Nepeta species and the evaluation of their antimicrobial activity. Fitoterapia. 2010;81(6):621-6.
https://doi.org/10.1016/j.fitote.2010.03.007
Nestorović Živković J. Antioxidative, antimicrobial and allelopathic effects of three endemic Nepeta species (Lamiaceae) [dissertation] Belgrade: University of Belgrade; 2013.
2298/BG20130917NESTOROVICZIVKOVIC
Formisano C, Rigano D, Senatore F. Chemical constituents and biological activities of Nepeta species. Chem Biodiver. 2011;8(10):1783-818.
https://doi.org/10.1002/cbdv.201000191
Salehi B, Valussi M, Jugran AK, Martorell M, Ramirez-Alarcón K, Stojanović-Radić ZZ, Antolak H, Kręgie D, Mileski KS, Sharifi-Rad M, Setzer, WN, Luz Cádiz-Gurrea M, Segura-Carretero A, Şener B, Sharifi-Rad J. Nepeta species: From farm to food applications and phytotherapy. Trends food Sci Technol. 2018;80:104-22.
https://doi.org/10.1016/j.tifs.2018.07.030
Diklic N. Nepeta rtanjensis Diklic et Milojevic spec. nov.-nova vrsta iz roda Nepeta L. Bull du Museum d’Histoire Nat Belgrade, Ser B, Livre. 1976;31:23-35.
Liblikas I, Santangelo EM, Sandell J, Baeckström P, Svensson M, Jacobsson U, Unelius CR. Simplified isolation procedure and interconversion of the diastereomers of nepetalactone and nepetalactol. J Nat Prod. 2005;68(6):886-90.
https://doi.org/10.1021/np049647d
Chalchat JC, Gorunovic MS, Petrovic SD, Maksimovic ZA. Composition of the essential oil of Nepeta rtanjensis Diklić & Milojević, Lamiaceae from Serbia. J Essent Oil Res. 2000;12(2):238–40.
https://doi.org/10.1080/10412905.2000.9699507
Ljaljević-Grbić M, Stupar M, Vukojević J, Soković M, Misić D, Grubišić D, Mihailo R. Antifungal activity of Nepeta rtanjensis essential oil. J Serbian Chem Soc. 2008;73(10):961-5.
https://doi.org/10.2298/jsc0810961g
Mišić D, Šiler B, Gašić U, Avramov S, Živković S, Živković JN, Milutinović M, Tešić Ž. Simultaneous UHPLC/DAD/(+/-)HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of Nepeta species: A possible application in chemotaxonomic studies. Phytochem Anal. 2015;26(1):72-85.
https://doi.org/10.1002/pca.2538
Holm L, Doll J, Holm E, Pancho J V, Herberger JP. World weeds: natural histories and distribution. John Wiley & Sons; 1997.
Athanassova DP. Allelopathic effect of Amaranthus retroflexus L. on weeds and crops. In: Seizième conférence du COLUMA Journées internationales sur la lutte contre les mauvaises herbes; 1995 Dec 6-8; Reims, France. 1996. p. 437-42.
Tehrani M, Sankian M, Assarehzadegan MA, Falak R, Jabbari F, Varasteh A. Immunochemical characterization of Amaranthus retroflexus pollen extract: extensive cross-reactive allergenic components among the four species of Amaranthaceae/Chenopodiaceae. Iran J Allergy Asthma Immunol. 2010;87-95.
Buttenschøn RM, Waldispühl S, Bohren C. Guidelines for management of common ragweed. Ambrosia artemisiifolia. 2010.
Montagnani C, Gentili R, Smith M, Guarino MF, Citterio S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). CRC Crit Rev Plant Sci. 2017;36(3):139-78.
https://doi.org/10.1080/07352689.2017.1360112
Brückner D, Czimber G, Pinke G, others. Changes in the weed flora of maize fields in Szigetköz (north-west Hungary) between 1990 and 1996. Acta Agron Ovariensis. 1997;39(1/2):15-9.
Darlington HT. Dr. WJ Beal’s seed-viability experiment. Am J Bot. 1922;9(5):266-9.
Chan-Yeung M, Anthonisen NR, Becklake MR, Bowie D, Sonia Buist A, Dimich-Ward H, Ernst P, Sears MR, Siersted HC, Sweet L, Van Til L, Manfreda J. Geographical variations in the prevalence of atopic sensitization in six study sites across Canada. Allergy. 2010;65(11):1404-13.
https://doi.org/10.1111/j.1398-9995.2010.02399.x
Salo PM, Calatroni A, Gergen PJ, Hoppin JA, Sever ML, Jaramillo R, Arbes SJ, Zeldin DC. Allergy-related outcomes in relation to serum IgE: results from the National Health and Nutrition Examination Survey 2005-2006. J Allergy Clin Immunol. 2011;127(5):1226-35.
https://doi.org/10.1016/j.jaci.2010.12.1106
Bonini M, Monti GS, Pelagatti MM, Ceriotti V, Re EE, Bramè B, Bottero P, Tosi A, Vaghi A, Martelli A, Traina GM, Rivolta L, Rivolta F, Otrolani CM. Ragweed pollen concentration predicts seasonal rhino-conjunctivitis and asthma severity in patients allergic to ragweed. Sci Rep. 2022;12(1):15921.
https://doi.org/10.1038/s41598-022-20069-y
Weston LA, Barney JN, DiTommaso A. A review of the biology and ecology of three invasive perennials in New York State: Japanese knotweed (Polygonum cuspidatum), mugwort (Artemisia vulgaris) and pale swallow-wort (Vincetoxicum rossicum). Plant Soil. 2005;277:53-69.
https://doi.org/10.1007/s11104-005-3102-x
Pannacci E, Pettorossi D, Regni L, Tei F. Allelopathic potential of mugwort (Artemisia vulgaris L.) to control the Italian ryegrass (Lolium multiflorum Lam.) in winter wheat. Allelopath J. 2015;36(2):257:72.
Cosi V, Gadermaier G. The Role of Defensins as Pollen and Food Allergens. Curr Allergy Asthma Rep. 2023;1-9.
https://doi.org/10.1007/s11882-023-01080-3
Gokturk RS, Sumbul HI. A taxonomic revision of the genus Cephalaria (Caprifoliaceae) in Turkey. Turk J Botany. 2014;38(5):927-68.
https://doi.org/10.3906/bot-1310-6
Bitarafan Z, Andreasen C. Harvest weed seed control: Seed production and retention of Fallopia convolvulus, Sinapis arvensis, Spergula arvensis and Stellaria media at spring oat maturity. Agronomy. 2020;10(1):46.
https://doi.org/10.3390/agronomy10010046
Kropff MJ, Joenje W, Bastiaans L, Habekotte B, Van Oene H, Werner R. Competition between a sugar beet crop and populations of Chenopodium album L. and Stellaria media L. Netherlands J Agric Sci. 1987;35(4):525-8.
Padu K, Khanduri VP, Singh B, Rawat D, Riyal MK, Kumar KS. Phytotoxicity of common weeds on germination, seedling growth, NPK uptake and chlorophyll content of four hill crops of Garhwal Himalaya. J Agric Food Res. 2023;12:100539.
https://doi.org/10.1016/j.jafr.2023.100539
Esposito M, Cirillo V, De Vita P, Cozzolino E, Maggio A. Soil nutrition management may preserve non-detrimental weed communities in rainfed winter wheat (T. aestivum). Agric Ecosyst Environ. 2023;355:108596.
https://doi.org/10.1016/j.agee.2023.108596
Nestorović Živković J, Dmitrović S, Jovanović V, Živković S, Božić D, Aničić N, Mišić D. Allelopathic potential of essential oil of Nepeta rtanjansis. Allelopath J. 2016;37(2):207-19.
Prijović M, Janjić V, Nikolić B, Stavretović N, Jovanović V. Klijanje semena pet korovskih vrsta pod različitim temperaturnim i svetlosnim uslovima. Acta Herbol. 2015;24(2):99-108.
Weir TL, Park SW, Vivanco JM. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol. 2004;7(4):472-9.
https://doi.org/10.1016/j.pbi.2004.05.007
Pawlowski A, Kaltchuk-Santos E, Zini CA, Caramão EB, Soares GLG. Essential oils of Schinus terebinthifolius and S. molle (Anacardiaceae): Mitodepressive and aneugenic inducers in onion and lettuce root meristems. South African J Bot. 2012;80:96-103.
https://doi.org/10.1016/j.sajb.2012.03.003
Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol. 2005;31:1187-203.
https://doi.org/10.1007/s10886-005-4256-y
Mutlu S, Atici Ö, Esim N, Mete E. Essential oils of catmint (Nepeta meyeri Benth.) induce oxidative stress in early seedlings of various weed species. Acta Physiol Plant. 2011;33(3):943-51.
https://doi.org/10.1007/s11738-010-0626-3
Mutlu S, Atici O, Esim N. Bioherbicidal effects of essential oils of Nepeta meyeri Benth. on weed spp. Allelopath J. 2010;26(2):291-300.
Kordali S, Tazegul A, Cakir A. Phytotoxic effects of Nepeta meyeri Benth. extracts and essential oil on seed germinations and seedling growths of four weed species. Rec Nat Prod. 2015;9(3):404-18.
Tworkoski T. Herbicide effects of essential oils. Weed Sci. 2002;50(4):425-31.
Stefanowicz AM, Stanek M, Majewska ML, Nobis M, Zubek S. Invasive plant species identity affects soil microbial communities in a mesocosm experiment. Appl Soil Ecol. 2019;136:168-77.
https://doi.org/10.1016/j.apsoil.2019.01.004
Onen H. Does allelopathy play a role in suppression of mugwort (Artemisia vulgaris) by alfalfa? Plant Prod Sci. 2013;16(3):255-60.
https://doi.org/10.1626/pps.16.255
Rasool AA. Allelopathic potential of aerial and root extracts of alfalfa against germination and seedling related traits of four weed species. J Zankoy Sulaimani-Part A. 2014;16:2.
Scavo A, Pandino G, Restuccia A, Mauromicale G. Leaf extracts of cultivated cardoon as potential bioherbicide. Sci Hortic (Amsterdam). 2020;261:109024.
https://doi.org/10.1016/j.scienta.2019.109024
Konstantinović B, Koren A, Kojić M, Samardžić N, Sikora V, Popov M. Allelopathic properties of hemp. Contemp Agric. 2021;70(3-4):101-7.
https://doi.org/10.2478/contagri-2021-0015
Dyanat M, Asgari F. Phytotoxic effects of essential oils from Nepeta glocephalata Rech.f. And N. ispahanica Boiss. And selected weed species. Acta Agric Slov. 2021;117(4):1-12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mladen Prijović, Bogdan Nikolić, Ivana Dragićević, Jasmina Nestorović Živković, Slavica Dmitrović, Zlatko Giba, Vladan Jovanović
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.