Insights into the response of Miscanthus x giganteus to rhizobacteria: enhancement of metal tolerance and root development under heavy metal stress

Authors

  • Mila Pešić 1. Faculty of Biology, University of Belgrade, Belgrade, Serbia; 2. Institute of Soil Science, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-7589-9100
  • Svetlana Radović 1. Faculty of Biology, University of Belgrade, Belgrade, Serbia; 2. Faculty of Biology, Centre for Biological Control and Plant Growth Promotion, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0002-7546-6468
  • Tamara Rakić Faculty of Biology, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-6959-3439
  • Željko Dželetović Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0001-9166-7094
  • Slaviša Stanković 1. Faculty of Biology, University of Belgrade, Belgrade, Serbia; 2. Faculty of Biology, Centre for Biological Control and Plant Growth Promotion, University of Belgrade, Belgrade, Serbia https://orcid.org/0000-0003-0527-8741
  • Jelena Lozo 1. Faculty of Biology, University of Belgrade, Belgrade, Serbia; 2. Faculty of Biology, Centre for Biological Control and Plant Growth Promotion, University of Belgrade, Belgrade, Serbia http://orcid.org/0000-0001-9888-5270

DOI:

https://doi.org/10.2298/ABS240301014P

Keywords:

microorganisms-plant interactions, transcriptome analysis, differential gene expression (DEG), phytoremediation, Miscanthus x giganteus

Abstract

Paper description:

  • Rhizobacteria enhance the phytoremediation potential of Miscanthus x giganteus by stimulating growth and root development, resulting in increased biomass production, improved nutrient status, metal uptake, and accumulation.
  • Transcriptomic analysis: rhizobacteria and x giganteus interaction modulates gene expression in roots, 9892 differential gene expression units DEGs change expression after treatment.
  • Gene ontology analysis: upregulated DEGs enriched in 32 terms; downregulated genes enriched in 63 terms.
  • Expression of MATE 40 and COBRA-like 1 (involved in plant response to biotic and abiotic stress, cell wall organization and cellular elongation processes, respectively) increased in bacteria-treated plants.

Abstract: The use of bioenergy crops such as Miscanthus x giganteus in phytoremediation could have both environmental and economic benefits, such as biomass production and soil conservation for crops. In our previous work, we showed that rhizobacteria from the rhizosphere of M. x giganteus stimulated metal extraction and uptake and enhanced the phytoremediation ability of treated M. x giganteus. In the present study, we conducted transcriptome analysis and qPCR to elucidate the molecular mechanisms underlying these interactions in response to bacterial treatment by identifying the candidate genes involved in growth and development processes and metal uptake. Using high-throughput RNA sequencing of root samples, we found that 5134 and 4758 genes were up- and downregulated in plants treated with the rhizobacteria consortium. Gene ontology analysis showed that the upregulated DEGs were significantly enriched in 32 terms, while the downregulated genes were significantly enriched in 63 terms. Our results confirmed the increased expression of two genes: the multidrug and toxic compound extrusion, also known as multi-antimicrobial extrusion (MATE) 40, known for its role in plant response to biotic and abiotic stress, and COBRA-like protein 1 belonging to the COBRA-like (COBL) gene family, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein involved in cell wall thickening, cell elongation, and biomass increase when compared to untreated plants. We present the first insight into a mechanism whereby the interaction between the rhizobacterial consortium and M. x giganteus fosters plant growth and enhances its capacity for phytoremediation.

Downloads

Download data is not yet available.

References

Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Bhojiya AA, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root exudates: Mechanistic insight of plant growth promoting rhizobacteria for sustainable crop production. Front Microbiol. 2022;13:916488. https://doi.org/10.3389/fmicb.2022.916488

Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci. 2022;12(3):1231. https://doi.org/10.3390/app12031231

Souza RD, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401-19. https://doi.org/10.1590/S1415-475738420150053

Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, Guo H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. Sci Total Environ. 2021;769:145224. https://doi.org/10.1016/j.scitotenv.2021.145224

Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep. 2019;9(1):5855. https://doi.org/10.1038/s41598-019-41899-3

Awan SA, Ilyas N, Khan I, Raza MA, Rehman AU, Rizwan M, Rastogi A, Tariq R, Brestic M. Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants. 2020;9(7):878. https://doi.org/10.3390/plants9070878

Mitra S, Pramanik K, Sarkar A, Ghosh PK, Soren T, Maiti TK. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf. 2018;156:183-96. https://doi.org/10.1016/j.ecoenv.2018.03.001

He X, Xu M, Wei Q, Tang M, Guan L, Lou L, Xu X, Hu Z, Chen Y, Shen Z, Xia X. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf. 2020;205:111333. https://doi.org/10.1016/j.ecoenv.2020.111333

Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater. 2019;379:120813. https://doi.org/10.1016/j.jhazmat.2019.120813

Han H, Sheng X, Hu J, He L, Wang Q. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions. Ecotoxicol Environ Saf. 2018;161:526-33. https://doi.org/10.1016/j.ecoenv.2018.06.033

Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf. 2018;147:175-91. https://doi.org/10.1016/j.ecoenv.2017.08.032

Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front Microbiol. 2022;13:966226. https://doi.org/10.3389/fmicb.2022.966226

Andrejić G, Šinžar-Sekulić J, Prica M, Dželetović Ž, Rakić T. Phytoremediation potential and physiological response of Miscanthus× giganteus cultivated on fertilized and non-fertilized flotation tailings. Environ Sci Pollut Res. 2019;26:34658-69. https://doi.org/10.1007/s11356-019-06543-7

Nurzhanova A, Pidlisnyuk V, Abit K, Nurzhanov C, Kenessov B, Stefanovska T, Erickson L. Comparative assessment of using Miscanthus× giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environ Sci Pollut Res. 2019;26:13320-33. https://doi.org/10.1007/s11356-019-04707-z

Spence AK, Boddu J, Wang D, James B, Swaminathan K, Moose SP, Long SP. Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus× giganteus. J Exp Bot. 2014;65(13):3737-47. https://doi.org/10.1093/jxb/eru209

Nebeská D, Trögl J, Ševců A, Špánek R, Marková K, Davis L, Burdová. Miscanthus x giganteus role in phytodegradation and changes in bacterial community of soil contaminated by petroleum industry. Ecotoxicol. Environ. Saf. 2021;224:112630. https://doi.org/10.1016/j.ecoenv.2021.112630

Nedjimi B. Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci. 2021;3(3):286. https://doi.org/10.1007/s42452-021-04301-4

Fernando A, Oliveira JS. Effects on growth, productivity, and biomass quality of Miscanthus x giganteus of soils contaminated with heavy metals. In: Willibrordus P. M. van Swaaij, editor. Proceedings: 2nd World Conference on Biomass for Energy, Industry and Climate Protection; 2004 May 10-14; Rome, Italy. Florence: ETA; 2004. p. 387-90.

Alves ARA, Yin Q, Oliveira RS, Silva EF, Novo LAB. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions. Sci Total Environ. 2022;838:156435. https://doi.org/10.1016/j.scitotenv.2022.156435

20. Ma Y, Rajkumar M, Zhang C, Freitas H. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater. 2016; 320:36-44. https://doi.org/10.1016/j.jhazmat.2016.08.009

Zadel U, Nesme J, Michalke B, Vestergaard G, Płaza GA, Schröder P, Radl V, Schloter M. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Sci Total Environ. 2020;711:134433. https://doi.org/10.1016/j.scitotenv.2019.134433

Pidlisnyuk V, Mamirova A, Pranaw K, Shapoval PY, Trögl J, Nurzhanova A. Potential role of plant growth-promoting bacteria in Miscanthus x giganteus phytotechnology applied to the trace elements contaminated soils. Int Biodeterior Biodegrad. 2020;155:105103. https://doi.org/10.1016/j.ibiod.2020.105103

Rakić T, Pešić M, Kostić N, Andrejić G, Fira D, Dželetović Ž, Stanković S, Lozo J. Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings. Plant Soil. 2021;462:349-63. https://doi.org/10.1007/s11104-021-04865-5

Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38(6):1767-71. https://doi.org/10.1093/nar/gkp1137

Erlich Y, Mitra PP, Delabastide M, McCombie WR, Hannon GJ. Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nat Methods. 2008;5(8):679-82. https://doi.org/10.1038/nmeth.1230

Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21(9):1543-51. http://doi.org/10.1101/gr.121095.111

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511-5. https://doi.org/10.1038/nbt.1621

Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J, Guernec G, Jagla B, Jouneau L, Laloë D, Gall CL, Schaëffer B, Crom SL, Guedj M, Jaffrézic F; Consortium FS. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings Bioinf. 2013;14(6):671-83. https://doi.org/10.1093/bib/bbs046

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11;R106. https://doi.org/10.1186/gb-2010-11-10-r106

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010;26(1):139-40. https://doi.org/10.1093/bioinformatics/btp616

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. https://doi.org/10.1093/nar/28.1.27

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284-7. https://doi.org/10.1089/omi.2011.0118

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2000;29(9):e45. https://doi.org/10.1093/nar/29.9.e45

Miao J, Feng Q, Li Y, Zhao Q, Zhou C, Lu H, Fan D, Yan J, Lu Y, Tian Q, Li W, Weng Q, Zhang L, Zhao Y, Huang T, Li L, Huang X, Sang T, Han B. Chromosome-scale assembly and analysis of biomass crop Miscanthus lutarioriparius genome. Nature Commun. 2021;12(1):2458. https://doi.org/10.1038/s41467-021-22738-4

Zhang W, Liao L, Xu J, Han Y, Li L. Genome-wide identification, characterization and expression analysis of MATE family genes in apple (Malus× domestica Borkh). BMC Genomics, 2021;22(1):632. https://doi.org/10.1186/s12864-021-07943-1

Niu E, Shang X, Cheng C, Bao J, Zeng Y, Cai C, Du X, Guo W. Comprehensive analysis of the COBRA-Like (COBL) gene family in gossypium identifies two COBLs potentially associated with fiber quality. PloS one, 2015;10(12):e0145725. https://doi.org/10.1371/journal.pone.0145725

Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng. 2007;9(03):90-5. https://doi.org/10.1109/MCSE.2007.55

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261-72. https://doi.org/10.1038/s41592-019-0686-2

Lin H, Wang Z, Liu C, Dong Y. Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosphere, 2022;305:135457. https://doi.org/10.1016/j.chemosphere.2022.135457

Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 2020;11:359. https://doi.org/10.3389/fpls.2020.00359

Wu B, Luo S, Luo H, Huang H, Xu F, Feng S, Xu H. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Sci Total Environ. 2022;808:151995. https://doi.org/10.1016/j.scitotenv.2021.151995

Navazas A, Mesa V, Thijs S, Fuente-Maqueda F, Vangronsveld J, Peláez AI, Cuypers A, González. Bacterial inoculant-assisted phytoremediation affects trace element uptake and metabolite content in Salix atrocinerea. Sci Total Environ. 2022;820:153088. https://doi.org/10.1016/j.scitotenv.2022.153088

Ezaki B, Nagao E, Yamamoto Y, Nakashima S, Enomoto T. Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Rep. 2008;27(5):951-61. https://doi.org/10.1007/s00299-007-0503-8

Al Souki KS, Liné C, Douay F, Pourrut B. Response of three Miscanthus × giganteus cultivars to toxic elements stress: part 1, plant defence mechanisms. Plants 2021;10(10):2035. https://doi.org/10.3390/plants10102035

45. Hu R, Yu C, Wang X, Jia C, Pei S, He K, He G, Kong Y, Zhou G. De novo transcriptome analysis of Miscanthus lutarioriparius identifies candidate genes in rhizome development. Front Plant Sci. 2017;8:492. https://doi.org/doi: 10.3389/fpls.2017.00492

Nie G, Zhong M, Cai J, Yang X, Zhou J, Appiah C, Tang M, Wang X, Feng G, Huang L, Zhang X. Transcriptome characterization of candidate genes related to chromium uptake, transport, and accumulation in Miscanthus sinensis. Ecotoxicol Environ Saf. 2021;221:112445. https://doi.org/10.1016/j.ecoenv.2021.112445

Santos ALD, Chaves-Silva S, Yang L, Maia LGS, Chalfun-Júnior A, Sinharoy S, Zhao J, Benedito VA. Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biol. 2017;17:185. https://doi.org/10.1186/s12870-017-1115-2

Du Z, Su Q, Wu Z, Huang Z, Bao J, Li J, Tu H, Zeng C, Fu J, He H. Genome-wide characterization of MATE gene family and expression profiles in response to abiotic stresses in rice (Oryza sativa). BMC Ecol Evol. 2021;21(1):141. https://doi.org/10.1186/s12862-021-01873-y

Huang Y, He G, Tian W, Li D, Meng L, Wu D, He T. Genome-wide identification of MATE gene family in potato (Solanum tuberosum L.) and expression analysis in heavy metal stress. Front Gen. 2021;12:650500. https://doi.org/10.3389/fgene.2021.650500

Xu L, Shen ZL, Chen W, Si GY, Meng Y, Guo N, Sun X, Cai YP, Lin Y, Gao JS. Phylogenetic analysis of upland cotton MATE gene family reveals a conserved subfamily involved in transport of proanthocyanidins. Mol Biol Rep. 2019;46:161-175. https://doi.org/10.1007/s11033-018-4457-4

Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep. 2014;4:3964. https://doi.org/10.1038/srep03964

Liu J, Li Y, Wang W, Gai J, Li Y. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genomics. 2016;17:223. https://doi.org/10.1186/s12864-016-2559-8

Li L, He Z, Pandey GK, Tsuchiya T, Luan S. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem. 2002;277(7):5360-8. https://doi.org/10.1074/jbc.M108777200

Guo H, Hong C, Xiao M, Chen X, Chen H, Zheng B, Jiang D. Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator Miscanthus sacchariflorus. Planta. 2016;244(6):1289-302. https://doi.org/10.1007/s00425-016-2578-3

Sivaguru M, Liu J, Kochian LV. Targeted expression of SbMATE in the root distal transition zone is responsible for Sorghum aluminum resistance. Plant J. 2013;76(2):297-307. https://doi.org/10.1111/tpj.12290

Li P, Liu Y, Tan W, Chen J, Zhu M, Lv Y, Liu Y, Yu S, Zhang W, Cai H. Brittle culm 1 encodes a COBRA-like protein involved in secondary cell wall cellulose biosynthesis in Sorghum. Plant Cell Physiol. 2019;60(4):788-801. https://doi.org/10.1093/pcp/pcy246

Ahmed MZ, Alqahtani AS, Nasr FA, Alsufyani SA. Comprehensive analysis of the COBRA-like (COBL) gene family through whole-genome analysis of land plants. Genet Resour Crop Evol. 2024;71:863-72. https://doi.org/10.1007/s10722-023-01667-9

Zaheer M, Rehman SU, Khan SH, Shahid S, Rasheed A, Naz R, Sajjad M. Characterization of new COBRA like (COBL) genes in wheat (Triticum aestivum) and their expression analysis under drought stress. Mol Biol Rep. 2022;49(2):1379-87. https://doi.org/10.1007/s11033-021-06971-0

Bahmani R, Kim D, Modareszadeh M, Hwang S. Cadmium enhances root hair elongation through reactive oxygen species in Arabidopsis. Environ Experim Botany. 2022;196:104813. https://doi.org/10.1016/j.envexpbot.2022.104813

Barling A, Swaminathan K, Mitros T, James BT, Morris J, Ngamboma O, Hall MC, Kirkpatrick J, Alabagy M, Spence AK, Hudson ME, Rokhsar DS, Moose SP. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes. BMC Genomics. 2013;14:864. https://doi.org/10.1186/1471-2164-14-864

Downloads

Published

2024-07-10

How to Cite

1.
Pešić M, Radović S, Rakić T, Dželetović Željko, Stanković S, Lozo J. Insights into the response of Miscanthus x giganteus to rhizobacteria: enhancement of metal tolerance and root development under heavy metal stress. Arch Biol Sci [Internet]. 2024Jul.10 [cited 2024Jul.18];76(2):205-21. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/9612

Issue

Section

Articles

Most read articles by the same author(s)