BIOLOGICAL CONTROL OF GYPSY MOTH (LYMANTRIA DISPAR): AN RNAI-BASED APPROACH AND A CASE FOR DNA INSECTICIDES

Authors

  • Palmah M. Nyadar Department of Biochemistry, Taurida Academy of V. I. Vernadsky Crimean Federal University, Simferopol, Crimea
  • Aleksei S. Zaitsev Department of Biochemistry, Taurida Academy of V. I. Vernadsky Crimean Federal University, Simferopol, Crimea
  • Adeyemi A. Tajudeen Department of Biochemistry, Taurida Academy of V. I. Vernadsky Crimean Federal University, Simferopol, Crimea
  • Maksym N. Shumskykh Department of Biochemistry, Taurida Academy of V. I. Vernadsky Crimean Federal University, Simferopol, Crimea
  • Volodymyr V. Oberemok Department of Biochemistry, Taurida Academy of V. I. Vernadsky Crimean Federal University, Simferopol, Crimea

Abstract

The discovery of the post-transcriptional gene silencing (PTGS) mechanism, widely known as RNAi (RNA interference), has contributed towards the elucidation of the cellular machinery involved in the response against viral infections based on gene silencing, and in developmental regulation of translational suppression. The application of RNAi in insect pest management (IPM), and gene functional analysis, has been of enormous importance. Unfortunately, as RNAi has many times proven to be difficult to examine in Lepidoptera, focus has shifted to other potential post-genomic options in IPM. Special attention has afforded to novel DNA insecticides based on preparations of short single-stranded fragments of baculovirus anti-apoptosis genes, which represent a safe and relatively rapid alternative approach for IPM. This paper focuses on the drawbacks and advantages of DNA insecticides used in gypsy moth control and based on RNAi.

 

Keywords: RNAi-based insect pest control; DNA insecticides; gypsy moth control

 

Received: August 28, 2015; Revised: November 16, 2015; Accepted: November 20, 2015; Published online: May 5, 2016

Downloads

Download data is not yet available.

References

Ferre J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol. 2002;47:501-33.

Wilson RC, Doudna JA . Molecular Mechanisms of RNA Interference. Annu Rev Biophys. 2013;42:217-39.

Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felföldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gómez I, Grimmelikhuijzen CJ, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberón M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swevers L, Smagghe G. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol. 2011;57(2):231-45.

Oberemok VV, inventor; Taurida National V.I Vernadsky University, assignee. Method of elimination of phyllophagous insects from order Lepidoptera. Ukraine patent UA 36445. 2008 Oct 27.

Oberemok VV, Skorokhod OA. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control. Pest Biochem Phys. 2014;113:1-7.

Oberemok VV, Nyadar PM. Investigation of mode of action of DNA insecticides on the basis of LdMNPV IAP-3 gene. Turk J Biol. 2015;39:258-64.

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363-6.

Tomari Y, Zamore PD. Perspective, machines for RNAi. Genes Dev. 2005;19(5):517-29.

Meister G, Landthaler M, Dorsett Y, Tusch T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA. 2004;10(3):544-50.

Lee Y, Kim M, Han JJ, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051-60.

Zotti MJ, Smagghe G. RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotrop Entomol. 2015;44(3):197-213.

Noh MY, Beeman RW, Arakane Y. RNAi-based functional genomics in Tribolium castaneum and possible application for controlling insect pests. Entomol Res. 2012;42(1):1-10.

Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404(6775):293-6.

Wang Y, Zhang H, Li H, Miao X. Second generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One. 2011;6(4):e0018644.

Huvenne H, Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol. 2010;56(3):227-35.

Hakim RS, Baldwin K, Smagghe G. Regulation of midgut growth, development and metamorphosis. Annu Rev Entomol. 2010;55:593-608.

Katoch R, Sethi A, Thakur N, Murdock LL. RNAi for insect control: Current perspectives and future challenges. Appl Biochem Biotechnol. 2013;171(4):847-73.

Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol. 2006;15(3):383-91.

Bautista MAM, Miyata T, Miura K, Tanaka T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol. 2009;39(1):38-46.

Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One. 2012;7(10):e47534.

Baum JA, Bogaert T, Clinto W, Heck GR, Feldmann P, Hagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nature Biotechnol. 2007;25(11):1322-6.

Zhao YY, Yang G, Wang-Pruski G, You MS. Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. Europ J Entomol. 2008;105(5):815-22.

Gu L, Knipple DC. Recent advances in RNA interference research in insects: Implications for future insect pest management strategies. Crop Prot. 2013; 45:36-40.

Meister G, Landthaler M, Dorsett Y, Tusch T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA. 2004;10(3):544-50.

Kawai-Tayooka H, Kuramoto C, Orui K, Motoyama K, Kikuchi K, Kanegae T, Wada M. DNA interference: a simple and efficient gene-silencing system for high-throughput functional analysis in the fern Adiantum. Plant Cell Physiol. 2004;45(11):1648-57.

Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347-55.

Bertin J, Mendrysa SM, LaCount DJ, Gaur S, Krebs JF, Armstrong RC, Tomaselli KJ, Friesen PD. Apoptic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol. 1996;70(9):6251-9.

Manji GA, Hozak RR, La Count DJ, Frisen PD. Baculovirus inhibitors of apoptosis functions at or upstream of the apoptic suppressor P35 to prevent programmed cell death. J Virol. 1997;71(6):4509-16.

Srinivasula SM, Ashwell JD. IAPs: what's in a name? Molecular Cell. 2008;30:123-35.

Hughes AL. Evolution of inhibitors of apoptosis in baculoviruses and their insect hosts infection. Infect Genet Evol. 2002;2(1):3-10.

Clem RJ. Viral IAPs, then and now. Semin Cell Dev Biol. 2015;39:72-9.

Oberemok VV, Laikova KV, Zaitsev AS, Nyadar PM, Shumskykh MN, Gninenko Yu I. DNA insecticides based on iap3 gene fragments of cabbage looper and gypsy moth nuclear polyhedrosis viruses show selectivity for non-target insects. Arch Biol Sci. 2015;67(3):785-92.

Oberemok V, Nyadar P, Zaitsev O, Nataliya L, Shiytum H, Omelchenko O. Pioneer evaluation of the possible side effects of the DNA insecticides on wheat (Triticum aestivum L.). Int J Biochem Bioph. 2013;1(3):57-63.

Panazzi AR. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop Entomol. 2013;42(2):119-27.

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goette MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 2015;132:1-41.

Hirai M, Terenius O, Faye I. Baculovirus and dsRNA induce hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol. 2004;13(4):399-405.

Terenius O, Bettencourt R, Lee SY, Li W, Söderhäll K., Faye I. RNA interference of hemolin causes depletion of phenoloxidase activity in Hyalophora cecropia. Dev Comp Immunol. 2007;31:571-5.

Lundgren JG, Duan JJ. RNAi-based insecticidal crops: potential effects on nontarget species. Biosci. 2013;63(8):657-65.

Downloads

Published

2016-09-05

How to Cite

1.
Nyadar PM, Zaitsev AS, Tajudeen AA, Shumskykh MN, Oberemok VV. BIOLOGICAL CONTROL OF GYPSY MOTH (LYMANTRIA DISPAR): AN RNAI-BASED APPROACH AND A CASE FOR DNA INSECTICIDES. Arch Biol Sci [Internet]. 2016Sep.5 [cited 2025Jan.22];68(3):677-83. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/987

Issue

Section

Articles