Dietary exposure to essential oils of selected Pinus and Abies species leads to morphological changes in Drosophila melanogaster wings

Authors

DOI:

https://doi.org/10.2298/ABS240527019C

Keywords:

Abies, Drosophila melanogaster, Essential oils, Pinus, wing morphology

Abstract

Paper description:

  • Essential oils (EOs) are potential sources of biopesticides against pest insects. Since pest activity can rely on flying, the impact of EOs on wing morphology may be important.
  • Wings of Drosophila that were treated at larval stage with selected Pinus and Abies EOs at 3% concentration, were analyzed using geometric morphometrics.
  • Selected Abies and Pinus EOs induced pronounced changes in wing morphology that can be correlated with the toxicity and chemical compositions of the EOs.
  • The tested Abies and Pinus EOs exhibit the potential for use as biopesticides controlling pest activities that depend on insect wing morphology.

Abstract: Essential oils (EOs) from conifer species are a potential source of biopesticides due to their various bioactive effects against pest insects. Since the harmful activity of pest insects often relies on their ability to fly, the disruption of wing morphology due to the use of essential oils (EOs) could be significant. This study investigated changes in wing shape and size in the model insect Drosophila melanogaster after exposure to EOs derived from selected conifers species. Drosophila larvae were treated with a diet containing 3% EOs from 6 Pinus and 3 Abies species. After completing their life cycle, the wings of adults were dissected and analyzed using the geometric morphometrics method. Changes in Drosophila wing morphology were observed. The potential effect of the major compounds of the tested EOs on wing morphology is discussed. We believe that this study lays the foundation for further evaluation of Abies and Pinus EOs in targeted toxicological studies against pest insects by focusing on the potential of EOs to disrupt pest activities that depend on wing morphology.

Downloads

Download data is not yet available.

References

WFO: World Flora Online [Internet]. c2023 - [cited 2023 Jan 9]. Available from: http://www.worldfloraonline.org.

Menković N, Šavikin K, Tasić S, Zdunić G, Stešević D, Milosavljević S, Vincek D. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J Ethnopharmacol. 2011;133:97-107. https://doi.org/10.1016/j.jep.2010.09.008

Yang S-A, Jeon S-K, Lee E-J, Im N-K, Jhee K-H, Lee S-P, Lee I-S. Radical scavenging activity of the essential oil of Silver fir (Abies alba). J Clin Biochem Nutr. 2009;44(3):253-259. https://doi.org/10.3164/jcbn.08-240

Mitić ZS, Jovanović B, Jovanović SČ, Mihajilov-Krstev T, Stojanović-Radić ZZ, Cvetković VJ, Mitrović TL, Marin PD, Zlatković BK, Stojanović GS. Comparative study of the essential oils of four Pinus species: Chemical composition, antimicrobial and insect larvicidal activity. Ind Crops Prod. 2018;111:55-62. https://doi.org/10.1016/j.indcrop.2017.10.004

Mitić ZS, Jovanović B, Jovanović SČ, Stojanović-Radić ZZ, Mihajilov-Krstev T, Jovanović NM, Nikolić BM, Marin PD, Zlatković BK, Stojanović GS. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind Crops Prod. 2019;140:111702. https://doi.org/10.1016/j.indcrop.2019.111702

Mitić ZS, Stojanović‐Radić ZZ, Jovanović SČ, Cvetković VJ, Nikolić JS, Ickovski JD, Mitrović TL, Nikolić BM, Zlatković BK, Stojanović GS. Essential oils of three Balkan Abies species: Chemical profiles, antimicrobial activity and toxicity toward Artemia salina and Drosophila melanogaster. Chem Biodivers. 2022;19(6):e202200235. https://doi.org/10.1002/cbdv.202200235

Lahlou M. Composition and molluscicidal properties of essential oils of five Moroccan Pinaceae. Pharm Biol. 2003; 41:207-210. https://doi.org/10.1076/phbi.41.3.207.15097

Koutsaviti K, Giatropoulos A, Pitarokili D, Papachristos D, Michaelakis A, Tzakou O. Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2015;114:583-592. https://doi.org/10.1007/s00436-014-4220-2

Govindarajan M, Rajeswary M, Benelli G. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf. 2016;129:85-90. https://doi.org/10.1016/j.ecoenv.2016.03.007

Wajs-Bonikowska A, Sienkiewicz M, Stobiecka A, Maciąg A, Szoka Ł, Karna E. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates. Chem Biodivers. 2015;12(3):407-18. https://doi.org/10.1002/cbdv.201400167

Xie Q, Liu Z, Li Z. Chemical composition and antioxidant activity of essential oil of six Pinus taxa native to China. Molecules. 2015;20(5):9380-92. https://doi.org/10.3390/molecules20059380

Tognolini M, Barocelli E, Ballabeni V, Bruni R, Bianchi A, Chiavarini M, Impicciatore M. Comparative screening of plant essential oils: phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci J. 2006;78(13):1419-32. https://doi.org/10.1016/j.lfs.2005.07.020

Hoai NT, Duc HV, Thao DT, Orav A, Raal A. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells. Pharmacogn Mag. 2015;11(44s1):S290-5. https://doi.org/10.4103/0973-1296.166052

Roberts DB. Drosophila melanogaster: the model organism. Entomologia experimentalis et applicata. 2006;121(2):93-103. https://doi.org/10.1111/j.1570-8703.2006.00474.x

Moraes KC, Montagne J. Drosophila melanogaster: A powerful tiny animal model for the study of metabolic hepatic diseases. Front Physiol. 2021;12:728407. https://doi.org/10.3389/fphys.2021.728407

Žabar A, Cvetković V, Rajković J, Jović J, Vasiljević P, Mitrović T. Larvicidal activity and in vitro effects of green tea (Camellia sinensis L.) water infusion. Biol Nyssana. 2013;4:75-9.

Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mavragani-Tsipidou P. Insecticidal and genotoxic activities of mint essential oils. J Agric Food Chem. 1997;45(7):2690-4. https://doi.org/10.1021/jf960685f

Mihajilov-Krstev T, Jovanović B, Jović J, Ilić B, Miladinović D, Matejić J,

Rajković J, Đorđević Lj, Cvetković V, Zlatković B. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil. Planta

Med. 2014;80(18):1698-705. https://doi.org/10.1055/s-0034-1383182

Mihajilov-Krstev T, Jovanović B, Zlatković B, Matejić J, Vitorović J, Cvetković V, Ilić B, Đorđević L, Joković N, Miladinović D, Jakšić T. Phytochemistry, toxicology and therapeutic value of Petasites hybridus subsp. ochroleucus (common Butterbur) from the Balkans. Plants. 2020;9(6):700. https://doi.org/10.3390/plants9060700

Vitorović J, Joković N, Radulović N, Mihajilov-Krstev T, Cvetković VJ, Jovanović N, Mitrović T, Aleksić A, Stanković N, Bernstein N. Antioxidant activity of hemp (Cannabis sativa L.) seed oil in Drosophila melanogaster larvae under non-stress and H2O2-induced oxidative stress conditions. Antioxidants. 2021;10(6):830. https://doi.org/10.3390/antiox10060830

Bongiorni S, Arisi I, Ceccantoni B, Rossi C, Cresta C, Castellani S, Forgione I, Rinalducci S, Muleo R, Prantera G. Apple polyphenol diet extends lifespan, slows down mitotic rate and reduces morphometric parameters in Drosophila melanogaster: A comparison between three different apple cultivars. Antioxidants. 2022;11(11):2086. https://doi.org/10.3390/antiox11112086

Eben A, Sporer F, Vogt H, Wetterauer P, Wink M. Search for alternative control strategies of Drosophila suzukii (Diptera: Drosophilidae): Laboratory assays using volatile natural plant compounds. Insects. 2020;11(11):811. https://doi.org/10.3390/insects11110811

Erland LA, Rheault MR, Mahmoud SS. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop Prot. 2015;78:20-26. https://doi.org/10.1016/j.cropro.2015.08.013

Gullickson M, Flavin Hodge C, Hegeman A, Rogers M. Deterrent effects of essential oils on spotted-wing Drosophila (Drosophila suzukii): Implications for organic management in berry crops. Insects. 2020;11(8):536. https://doi.org/10.3390/insects11080536

Mitić ZS, Stojanović‐Radić Z, Cvetković VJ, Jovanović SČ, Dimitrijević M, Ickovski JD, Jovanović N, Mihajilov‐Krstev T, Stojanović GS. Pseudotsuga menziesii (Pinaceae): Volatile profiles, antimicrobial activity and toxicological evaluation of its essential oil. Chem Biodivers. 2021;18(9):e2100424. https://doi.org/10.1002/cbdv.202100424

Cvetković VJ, Jovanović B, Lazarević M, Jovanović N, Savić-Zdravković D, Mitrović T, Žikić V. Changes in the wing shape and size in Drosophila melanogaster treated with food grade titanium dioxide nanoparticles (E171) – a multigenerational study. Chemosphere. 2020;261:127787. https://doi.org/10.1016/j.chemosphere.2020.127787

Silva PB, Santos RB, da Cruz RC, da Silva DC, da Silva PS. Effect of Croton tetradenius essential oil on larval viability, pupal viability, and wing geometric morphometrics of Aedes aegypti. Biocatal Agric Biotechnol. 2023;51:102743. https://doi.org/10.1016/j.bcab.2023.102743

Lazarević M, Kavallieratos NG, Nika EP, Boukouvala MC, Skourti A, Žikić V, Papanikolaou NE. Does the exposure of parental female adults of the invasive Trogoderma granarium Everts to pirimiphos-methyl on concrete affect the morphology of their adult progeny? A geometric morphometric approach. Environ Sci Pollut Res. 2019;26:35061-70. https://doi.org/10.1007/s11356-019-06120-y

Boukouvala MC, Kavallieratos NG, Žikić V, Stanković SS, Ilić Milošević M, Skourti A, Lazarević M. Sub-lethal effects of pirimiphos-methyl are expressed to different levels in wings of three stored-product coleopterans: A geometric morphometrics investigation. Insects. 2023;14(5):430. https://doi.org/10.3390/insects14050430

Lorenz C, Almeida F, Almeida-Lopes F, Louise C, Pereira SN, Petersen V, Vidal PO, Virginio F, Suesdek L. Geometric morphometrics in mosquitoes: what has been measured? Infect Genet Evol. 2017;54:205-15. https://doi.org/10.1016/j.meegid.2017.06.029

Mitić ZS, Jovanović SČ, Zlatković BK, Nikolić BM, Stojanović GS, Marin PD. Needle terpenes as chemotaxonomic markers in Pinus: subsections Pinus and Pinaster. Chem Biodivers. 2017;14(5):e1600453. https://doi.org/10.1002/cbdv.201600453

Zelditch Ml, Swiderski DL, Sheets HH. Geometric morphometrics for biologists: a primer. 2nd ed. Elsevier Academic Press; 2012.

Rohlf, F. J. tpsDig, Digitize landmarks and outlines [Software]. Stony Brook, NY: Department of Ecology and Evolution, State University of New York. 2021; [cited 2023 Aug 28]. Available from: https://www.sbmorphometrics.org/soft-dataacq.html.

Gidaszewski NA, Baylac M, Klingenberg CP. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evol Biol. 2009;9:110. https://doi.org/10.1186/1471-2148-9-110

Morgan TH, Bridges CB, Sturtevant AH. Contributions to the Genetics of Drosophila Melanogaster.. Washington: Carnegie Institution of Washington; 1919. 388 p. (No. 278)

Dryden IL, Mardia KV. Statistical shape analysis: Wiley series in probability and statistics. Chichester: John Wiley & Sons; 1998.

Rohlf FJ, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol.1990;39(1):40-59. https://doi.org/10.2307/2992207

Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11(2):353-7. https://doi.org/10.1111/j.1755-0998.2010.02924.x

Adams D, Collyer M, Kaliontzopoulou A, Baken E. Geomorph: software for geometric morphometric analyses [Software]. University of New England. 2023; [cited 2023 Aug 28]. Available from: https://cran.r-project.org/package=geomorph.

Rstudio Team. Rstudio: Integrated development for R [Software]. PBC, Boston, MA. 2020; [cited 2023 Aug 28]. Available from: http://www.rstudio.com/.

Wickham H. Ggplot2: Elegant graphics for data analysis. 2nd ed. Cham, Switzerland: Springer International Publishing; 2016. 260 p.

Campos EV, Proença PL, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol Indic. 2019;105:483-95. https://doi.org/10.1016/j.ecolind.2018.04.038

Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29(9):913-20. https://doi.org/10.1016/j.cropro.2010.05.008

de Souza MA, Da Silva L, Macêdo MJF, Lacerda-Neto LJ, dos Santos MAC, Coutinho HDM, Cunha FAB. Adulticide and repellent activity of essential oils against Aedes aegypti (Diptera: Culicidae) - a review. South Afr J Bot. 2019;124:160-5. https://doi.org/10.1016/j.sajb.2019.05.007

Chaubey MK. Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. (Coleoptera: Curculionidae). Biol Agric Hortic. 2012;28:111-9. https://doi.org/10.1080/01448765.2012.681352

Ma S, Jia R, Guo M, Qin K, Zhang L. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind Crops Prod. 2020;150:112403. https://doi.org/10.1016/j.indcrop.2020.112403

Chohan TA, Chohan TA, Mumtaz MZ, Alam MW, Naseer I, Riaz A, Naseem T, Iftikhar A, Najaf Ali DE, Hassan M, Ali HM. Insecticidal potential of α-Pinene and β-Caryophyllene against Myzus persicae and their impacts on gene expression. Phyton. 2023;92(7):1943-54. https://doi.org/10.32604/phyton.2023.026945

Norris EJ, Bloomquist JR. Fir (Abies balsamea) (Pinales: Pinaceae) needle essential oil enhances the knockdown activity of select insecticides. J Med Entomol. 2023;60(6):1350-6. https://doi.org/10.1093/jme/tjad101

Pavela R, Maggi F, Mazzara E, Torresi J, Cianfaglione K, Benelli G, Canale A. Prolonged sublethal effects of essential oils from non-wood parts of nine conifers on key insect pests and vectors. Ind Crops Prod. 2021;168:113590. https://doi.org/10.1016/j.indcrop.2021.113590

Al-Ghanim KA, Krishnappa K, Pandiyan J, Nicoletti M, Gurunathan B, Govindarajan M. Insecticidal potential of matricaria chamomilla’s essential oil and its components (E)-β-Farnesene, germacrene D, and α-Bisabolol oxide A against agricultural pests, malaria, and zika virus vectors. Agriculture. 2023;13(4):779. https://doi.org/10.3390/agriculture13040779

de Souza MT, de Souza MT, Bernardi D, de Melo DJ, Zarbin PHG, Zawadneak MAC. Insecticidal and oviposition deterrent effects of essential oils of Baccharis spp. and histological assessment against Drosophila suzukii (Diptera: Drosophilidae). Sci Rep. 2021;11:3944. https://doi.org/10.1038/s41598-021-83557-7

Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Neurotoxic effects of linalool and β-pinene on Tribolium castaneum Herbst. Molecules. 2017;22(12):2052. https://doi.org/10.3390/molecules22122052

Cao JQ, Pang X, Guo SS, Wang Y, Geng ZF, Sang YL, Guo PJ, Du SS. Pinene-rich essential oils from Haplophyllum dauricum (L.) G. Don display anti-insect activity on two stored-product insects. Int Biodeter Biodegr. 2019;140:1-8. https://doi.org/10.1016/j.ibiod.2019.03.007

Wang Q, Xu P, Sanchez S, Duran P, Andreazza F, Isaacs R, Dong K. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. Pest Manag Sci. 2021;77(8):3698-705. https://doi.org/10.1002/ps.6282

Abdelgaleil SAM, Mohamed MIE, Badawy MEI, El-arami SAA. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J Chem Ecol. 2009;35:518-25. https://doi.org/10.1007/s10886-009-9635-3

Feng Y-X, Wang Y, Chen Z-Y, Guo S-S, You C-X, Du S-S. Efficacy of bornyl acetate and camphene from Valeriana officinalis essential oil against two storage insects. Environ Sci Pollut Res. 2019;26:16157-65. https://doi.org/10.1007/s11356-019-05035-y

Benelli G, Govindarajan M, Rajeswary M, Vaseeharan B, Alyahya SA, Alharbi NS, Kadaikunnan S, Khaled JM, Maggi F. Insecticidal activity of camphene, zerumbone and α-Humulene from Cheilocostus speciosus rhizome essential oil against the old-world bollworm, Helicoverpa armigera. Ecotoxicol. Environ Saf. 2018;148:781-6. https://doi.org/10.1016/j.ecoenv.2017.11.044

Sharaby A, El-Dosary M. Possibility using camphene as biorational insecticide against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionedae). Int J Sci Res. 2016;5:222-5. https://doi.org/10.21275/ART2016782

Hachlafi NE, Aanniz T, Menyiy NE, Baaboua AE, Omari NE, Balahbib A, Shariati MA, Zengin G, Fikri-Benbrahim K, Bouyahya A. In vitro and in vivo biological investigations of camphene and its mechanism insights: A review. Food Rev Int. 2023;39(4):1799-826. https://doi.org/10.1080/87559129.2021.1936007

Downloads

Published

2024-10-25

How to Cite

1.
Cvetković VJ, Lazarević M, Mitić ZS, Zlatković B, Stojković Piperac M, Jevtović S, Stojanović G, Žikić V. Dietary exposure to essential oils of selected Pinus and Abies species leads to morphological changes in Drosophila melanogaster wings. Arch Biol Sci [Internet]. 2024Oct.25 [cited 2025Jan.22];76(3):267-80. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/9901

Issue

Section

Articles

Most read articles by the same author(s)