A first record of the antioxidant defense and selected trace elements in Salamandra salamandra larvae on Mt. Avala and Mt. Vršački Breg (Serbia)

Authors

  • Slađan Pavlović Department of Physiology, Institute for Biological Research “Siniša Stanković” – National Institute of The Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade http://orcid.org/0000-0002-5651-7178
  • Imre Krizmanić Institute of Zoology, University of Belgrade – Faculty of Biology, Studentski trg 16, 11000 Belgrade http://orcid.org/0000-0001-9684-8732
  • Slavica Borković-Mitić Department of Physiology, Institute for Biological Research “Siniša Stanković” – National Institute of The Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade http://orcid.org/0000-0003-4895-9985
  • Aleksandar Stojsavljević Department of Analytical Chemistry, University of Belgrade – Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade http://orcid.org/0000-0002-6221-3437
  • Bojan Mitić Institute of Zoology, University of Belgrade – Faculty of Biology, Studentski trg 16, 11000 Belgrade http://orcid.org/0000-0003-4507-7629

DOI:

https://doi.org/10.2298/ABS200825043P

Keywords:

antioxidant defense system, oxidative stress, trace elements, fire salamander, development

Abstract

Paper description:

  • The antioxidant defense system and concentrations of selected trace elements in the fire salamander (Salamandra salamandra) larvae from Mt. Avala and Mt. Vršački Breg, Serbia, were examined.
  • Salamander larvae from Mt. Vršački Breg had lower weights and lengths than larvae from Mt. Avala.
  • Antioxidant enzyme activities were higher, while the content of sulfhydryl groups was lower in larvae from Mt. Vršački Breg than in those from Mt. Avala. There were no correlations between the concentrations of trace elements in water and animal tissue.
  • The reported changes are the result of developmental differences and habitat characteristics.

Abstract: We investigated the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the phase II biotransformation enzyme glutathione S-transferase (GST) in the whole body of fire salamander larvae (Salamandra salamandra) from two localities on Mt. Avala (AVS and ABP) and one locality on Mt. Vršački Breg (VSB), Serbia. We also determined the total glutathione (GSH) and sulfhydryl group (SH) contents, as well as the concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), arsenic (As), cadmium (Cd), lead (Pb) and uranium (U). The obtained results show that animals from VSB had significantly lower weights and lengths than animals from AVS and ABP. The activities of all investigated enzymes were significantly higher, while the SH content was significantly lower in animals from VSB compared to those from AVS and ABP. No correlations between trace-element concentrations in water and animal tissue were observed. We concluded that the obtained results were more likely a consequence of the combination of developmental differences and the effects of different habitat conditions, environmental and anthropogenic influences than of concentrations of trace elements in the water alone.

Downloads

Download data is not yet available.

References

Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707-16.

Fridovich I. Mitochondria: are they the seat of senescence? Aging Cell. 1974;3:13-6.

Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28:463-99.

Doyen P, Vasseur P, Rodius F. Identification, sequencing and expression of selenium-dependent glutathione peroxidase transcript in the freshwater bivalve Unio tumidus exposed to Aroclor 1254. Comp Biochem Physiol C. 2006;144:122-9.

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 3rd Oxford University Press, Oxford; 1999.

Van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol. 2003;13:57-149.

De Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes. 2011; 60:2683-4.

Jing G, Li Y, Xie L, Zhang R. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper. Comp Biochem Physiol C. 2006;144:184-90.

Fernández B, Campillo JA, Martínez-Gómez C, Benedicto J. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. Aquat Toxicol. 2010;99:186-97.

Pechmann JHK, Scott DE, Semlitsch RD, Caldwell JP, Vitt LJ, Gibbons JW. Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science. 1991;253:892-95.

Gasser F. Recherche sur le status microevolutif de deux amphibiens urodeles, l'espece Pyreneene Euproctes asper (Duges) et l'espece Palearctique Salamandra salamandra (L.): Pro-teines et groupes seriques, cycles sexuels femelles et morphologie [dissertation]. Toulouse, France: l'Universite Paul Sabatier; 1975. 267 p. Franch.

Krizmanić I. Vodozemci i gmizavci Jažinačkih jezera (Šar planina). Zaštita Prirode. 1998;50:223-7. Serbian.

Vukov T, Tomovic Lj, Krizmanic I, Labus N, Jovic D, Dzukic G, Kalezic M. Conservation Issues of Serbian Amphibians Identified from Distributional, Life History and Ecological Data. Acta Zool Bulg. 2015;67:105-16.

Regulation on Designation and Protection of Strictly Protected and Protected Wild Species of Plants, Animals and

Fungi. Offi. Gazette Rep Serb. 2011;47.

Westheide W, Rieger R. Spezielle Zoologie: Teil 2: Wirbel- oder Schädeltiere. Heidelberg: Spektrum Akademischer Verlag; 2010. German.

Lionetto MG, Caricato R, Giordano ME, Pascariello MF, Marinosci L, Schettino T. Integrated use of biomarkers (acetylcholineesterase and antioxidant enzyme activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull. 2003;46:324-30.

Takada Y, Noguchit T, Kayiyama M. Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus. Cancer Res. 1982;42:4233-5.

Lowry OH, Rosebrough NL, Farr AL, Randall RI. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:265-75.

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170-5.

Claiborne A. Catalase activity. In: Greenwald RA, editor. Handbook of Methods for Oxygen Radical Research. Boca Raton, FL; CRC Press Inc.;1984. p. 283-4.

Tamura M, Oschino N, Chance B. Some characteristics of hydrogen and alkyl-hydroperoxides metabolizing systems in cardiac tissue. J Biochem. 1982;92:1019-31.

Glatzle D, Vulliemuier JP, Weber F, Decker K. Glutathione reductase test with whole blood a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 1974;30:665-7.

Habig WH, Pubst MJ, Jakoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130-9.

Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106:207-12.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70-7.

Darlington RB, Weinberg S Walberg H. Canonical variate analysis and related techniques. Rev Educ Res. 1973;43:433-54.

International Union for Conservation of Nature Annual Report 2016. Why is biodiversity in crisis? [Internet]. Gland: International Union for Conservation of Nature, IUCN; 2017. [Record created 2017 Feb 3; Record updated 2020 Apr 10; Cited: 2020 Aug 25]. Available from: https://portals.iucn.org/library/node/46619.

Blaustein AR, Wake DB. Declining amphibian populations: A global phenomenon? Trends Ecol Evol. 1990;5:203-4.

Caspers BA, Junge C, Weitere M, Steinfartz S. Habitat adaptation rather than genetic distance correlates with female preference in fire salamanders (Salamandra salamandra). Front Zool. 2009;6:13.

Alcobendas M, Buckley D, Tejedo M. Variability in survival, growth and metamorphosis in the larval fire salamander (Salamandra salamandra): effects of larval birth size, sibship and environment. Herpetologica. 2004;60:232-45.

Csillery K, Lengyel S. Density dependence in stream-dwelling larvae of firesalamander (Salamandra salamandra): a field experiment. Amphibia-Reptilia. 2004;25:343-9.

MacCracken JG, Stebbings JL. Test of a Body Condition Index with Amphibians. Journal Herpetol. 2012;46:346-50.

Prokić MD, Gavrić JP, Petrović TG, Despotović SG, Gavrilović BR, Radovanović TB, Krizmanić II, Pavlović SZ. Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comp Biochem Physiol A. 2019;234:98-105.

Metcalfe NB, Alonso-Alvarez C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct Ecol. 2010;24:984-96.

Gomez-Mestre I, Kulkarni S, Buchholz DR. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS One. 2013:8:e84266.

Rizzo AM, Adorni L, Montorfano G, Rossi F, Berra B. Antioxidant metabolism of Xenopus laevis embryos during the first days of development. Comp Biochem Physiol B. 2007;146:94-100.

Halliwell B. Superoxide dismutase, catalase, and glutathione peroxidase: Solutions to the problem of living with oxygen. New Phytol. 1974;73:1075-86.

Saint-Denis M, Labrot F, Narbonne JF, Ribera D. Glutathione,glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida Andrei. Arch Environ Contam Toxicol. 1998;35:602-14.

Fonseca VF, França S, Serafim A, Company R, Lopes B, Bebianno MJ, Cabral HN. Multi-biomarker responses to estuarine habitat contamination in three fish species: Dicentrarchus labrax, Solea senegalensis and Pomatoschistus microps. Aquat Toxicol. 2011;102:216-27.

Cossu C, Doyotte A, Babut M, Exinger A, Vasseur P. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicol Environ Saf. 2000;45:106-21.

Garcia TS, Johnson J, Jones J, Kroll AJ. Experimental evidence indicates variable responses to forest disturbance and thermal refugia by two plethodontid salamanders. For Ecol Manag. 2020;464:118045.

Abercrombie SA, de Perre C, Choi YJ, Tornabene BJ, Sepúlveda MS, Lee LS, Hoverman JT. Larval amphibians rapidly bioaccumulate poly- and perfluoroalkyl substances. Ecotoxicol Environ Saf. 2019;178:137-45.

Łuszczek-Trojnar E, Drag-Kozak E, Szczerbik P, Socha M, Popek W. Effect of

long-term dietary lead exposure on some maturation and reproductive parameters of a female Prussian carp (Carassius gibelio B.). Environ Sci Pollut Res. 2014;21:2465-78.

Koch RE, Hill GE. An assessment of techniques to manipulate oxidative stress in animals. Funct Ecol. 2017;31:9-21.

Valko M, Morris H, Cronin MTD. Metals, toxicity an oxidative stress. Curr Med Chem. 2005;12:1161-208.

Jamova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65-87.

Kaaya A, Najimi S, Ribera D, Narbonne JF, Moukrim A. Characterization of glutathione S-transferases (GST) activities in Perna perna and Mytilus galloprovincialis used as a biomarker of pollution in the Agadir Marine Bay (South of Morocco). Bull Environ Contam Toxicol. 1999;62:623-9.

Pavlović SZ, Borković-Mitić SS, RadovanovićTB, Perendija BR, Despotović SG, Gavrić JP, Saičić ZS. Seasonal variations of the activity of antioxidant defense enzymes in the Red Mullet (Mullus barbatus l.) from the Adriatic Sea. Mar Drugs. 2010;8:413-28.

Carvalho CS, Bernusso VA, Araújo HSS, Espíndola ELG, Fernandes MN. Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere. 2012; 89(1):60-9.

Letelier ME, Lepe AM, Faúdez M, Salazar J, Marí R, Aracena P, Speisky H. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact. 2005;151:71-82.

Djurašević S, Todorović, Pavlović S, Pejić S. Cadmium and Fullerenes in Liver Diseases. In: Watson RR, Preedy RV, ediotrs. Dietary Interventions in Liver Disease. London, UK: Academic Press; 2019. p. 333-44.

Vogiatzis A, Loumbourdis NS. Exposure of Rana ridibunda to lead. 1-Lead accumulation in different tissues and hepatic δ aminolevulinic acid dehydratase activity. J Appl Toxicol. 1999;19:25-9.

Ventura-Lima J, Sandrini JZ, Ferreira-Cravo M, Piedras FR, Moraes TB, Fattorini D, Notti A, Regoli F, Geracitano LA, Marins LF, Monserrat JM. Toxicological responses in Laeonereis acuta (Annelida, Polychaeta) after As exposure. Environ Int. 2007;33:559-64.

Battacharya A, Battacharya S. Induction of oxidative stress by As in Clarias batrachus: involvement of peroxissomes. Ecotoxicol Environ Saf. 2007;66:178-87.

Serre NBC, Alban C, Bourguignon J, Ravanel S. Uncovering the physiological and cellular effects of uranium on the root system of Arabidopsis thaliana. Environ Exp Bot. 2019;157:121-30.

Geng F, Hu N, Zheng JF, Wang CL, Chen X, Yu J, Ding DX. Evaluation of the toxic effect on zebrafish (Danio rerio) exposed to uranium mill tailings leaching solution. J Radioanal Nucl Chem. 2012;292:453-63.

Downloads

Published

2020-12-25

How to Cite

1.
Pavlović S, Krizmanić I, Borković-Mitić S, Stojsavljević A, Mitić B. A first record of the antioxidant defense and selected trace elements in Salamandra salamandra larvae on Mt. Avala and Mt. Vršački Breg (Serbia). Arch Biol Sci [Internet]. 2020Dec.25 [cited 2024Mar.28];72(4):491-50. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/5753

Issue

Section

Articles

Most read articles by the same author(s)