Metal and metalloid bioaccumulation in three centipedes (Chilopoda)

Authors

  • Bojan Mitić 1. Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; 2. Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34a, 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina
  • Slavica Borković-Mitić Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia https://orcid.org/0000-0003-4895-9985
  • Aleksandar Stojsavljević Innovative Centre of the Faculty of Chemistry, Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
  • Dalibor Stojanović Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
  • Slađan Pavlović Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia https://orcid.org/0000-0002-5651-7178
  • Ljubica Vasiljević Faculty of Technology Zvornik, University of East Sarajevo, Karakaj 34a, 75400 Zvornik, Republic of Srpska, Bosnia and Herzegovina
  • Nataša Ristić Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia https://orcid.org/0000-0003-0994-1280

DOI:

https://doi.org/10.2298/ABS220514019M

Keywords:

centipedes, trace metals, bioaccumulation factor (BAF), trace elements

Abstract

Paper description:

  • The use of centipedes as bioindicators of trace metal pollution was assessed.
  • The concentrations of Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Tl, Pb and U in animals and soil were measured by inductively coupled plasma mass spectrometry (ICP-MS).
  • Centipedes bioaccumulated Se (especially flavidus), Zn (C. flavidus and C. anomalans) and Cd (C. flavidus and E. transsylvanicus).
  • This is the first report where distinct bioaccumulation profiles of metals were established in centipedes.

Abstract: Three centipede species (Clinopodes flavidus, Cryptops anomalans and Eupolybothrus transsylvanicus) were used as bioindicators of trace metal and metalloid pollution in Belgrade, Serbia. The concentrations of 13 elements (the metals Mn, Co, Ni, Cu, Zn, Rb, Sr, Cd, Tl, Pb and U and metalloids As, Se) in whole animals and soil were measured by inductively coupled plasma mass spectrometry (ICP-MS). Differences in the concentrations of some elements in the analyzed species were observed, both in response to the sites and between species. In most cases, the trace element concentrations were higher in centipedes from a polluted site (an industrial area near a busy street with heavy traffic) but C. anomalans and E. transsylvanicus had higher Mn concentrations at an unpolluted site (a deciduous woodland on Mt. Avala). C. flavidus was a good bioindicator for detecting differences between Zn, Se and Cd. C. flavidus and C. anomalans were more efficient in accumulating Zn than E. transsylvanicus. It appears that C. anomalans poorly accumulated Cd, unlike C. flavidus and E. transsylvanicus, which accumulated Cd according to the high bioaccumulation factor (BAF) values. We conclude that the centipedes C. flavidus, C. anomalans and E. transsylvanicus can be used as suitable bioindicators of trace element exposure. Their ability to accumulate trace elements was different and depends on their physiology and lifestyle as well as the route of exposure.

Downloads

Download data is not yet available.

References

Wilcke W, Müller S, Kanchanakool N, Zech W. Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma. 1998;86(3-4):211-28. https://doi.org/10.1016/S0016-7061(98)00045-7

Li X, Poon CS, Liu PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem. 2001;16(11-12):1361-8. https://doi.org/10.1016/S0883-2927(01)00045-2

Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94(2):99-107. https://doi.org/10.1016/j.microc.2009.09.014

Pouyat RV, Szlavecz K, Yesilonis ID, Wong CP, Murawski L, Marra P, Casey RE, Lev S. Multi-scale assessment of metal contamination in residential soil and soil fauna: a case study in the Baltimore-Washington metropolitan region, USA. Landsc Urban Plan. 2015;142:7-17. https://doi.org/10.1016/j.landurbplan.2015.05.001

Hopkin SP, Martin MH. Heavy metals in the centipede Lithobius variegatus (Chilopoda). Environ Pollut B. 1983;6:309-18. https://doi.org/10.1016/0143-148X(83)90016-2

Hopkin SP, Martin MH. Assimilation of zinc, cadmium, lead and copper by the centipede Lithobius variegatus (Chilopoda). J Appl Ecol. 1984;21:535-46. https://doi.org/10.2307/2403427

Hopkin SP, Watson K, Martin MH, Mould ML. The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr Dierkd. 1985;55(1):88-94.

van Straalen NM, van Wensem J. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ Pollut. 1986;42(3):209-21. https://doi.org/10.1016/0143-1471(86)90032-2

Read HJ, Hopkin SP. A study of myriapod communities in woodlands contaminated with heavy metals. In: Minelli A, editor. Proceedings of the 7th International Congress of Myriapodology. Leiden: Brill; 1990. p. 289-98.

Dallinger R, Berger A, Birkel S. Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia. 1992;89:32-41. https://doi.org/10.1007/BF00319012

Dallinger R. Invertebrate organisms as biological indicators of trace metal pollution. Appl Biochem Biotechnol. 1994;48(1):27-31. https://doi.org/10.1007/BF02825356

Grelle C, Fabre M-C, Leprêtre A, Descamps M. Myriapod and isopod communities in soils contaminated by heavy metals in northern France. Eur J Soil Sci. 2000;51(3):425-33. https://doi.org/10.1046/j.1365-2389.2000.00317.x

Heikens A, Peijnenburg WJGM, Hendriks AJ. Bioaccumulation of heavy metals in terrestrial invertebrates. Environ Pollut. 2001;113(3):385-93. https://doi.org/10.1016/S0269-7491(00)00179-2

Nahmani J, Lavelle P. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur J Soil Biol. 2002;38(3-4):297-300. https://doi.org/10.1016/S1164-5563(02)01169-X

Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Nahmani J, Lavelle P. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol Biochem. 2004;36:91-8. https://doi.org/10.1016/j.soilbio.2003.09.001

Souza TS, Christofoletti CA, Bozzatto V, Fontanetti CS. The use of diplopods in soil ecotoxicology - a review. Ecotoxicol Environ Saf. 2014;103:68-73. https://doi.org/10.1016/j.ecoenv.2013.10.025

Chrzan A. The impact of heavy metals on the soil fauna of selected habitats in Niepołomice. Forest. Polish J Soil Sci. 2017;50(2):291-300. https://doi.org/10.17951/pjss.2017.50.2.291

Rajoo KS, Ismail A, Karam DS, Zulkifli SZ, Omar H, Lim A. Heavy metal bioaccumulation in soil arthropods at Malaysian sanitary landfill. J Environ Sci Pollut Res. 2017;3(1):160-3.

Vranković J, Borković-Mitić S, Ilić B, Radulović M, Milošević S, Makarov S, Mitić B. Bioaccumulation of metallic trace metals and antioxidant enzyme activities in Apfelbeckia insculpta (L. Koch, 1867) (Diplopoda: Callipodida) from the cave Hadži-Prodanova Pećina (Serbia). Int J Speleol. 2017;46(1):99-108. https://doi.org/10.5038/1827-806X.46.1.1981

Coelho C, Foret C, Bazin C, Leduc L, Hammada M, Inácio M, Bedell JP. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida. Sci Total Environ. 2018;635:1317-30. https://doi.org/10.1016/j.scitotenv.2018.04.213

Proc K, Bulak P, Kaczor M, Bieganowski A. A new approach to quantifying bioaccumulation of metals in biological processes. Biology. 2021;10(4):345. https://doi.org/10.3390/biology10040345

Zapparoli M. Centipedes in urban environments: Records from the City of Rome (Italy). Ber Nat-Med Verein Innsbruck. 1992;Suppl.10:231-36.

Stoev P. Myriapoda (Chilopoda, Diplopoda) in urban environments in the City of Sofia. In: Penev L, Niemelä J, Kotze DJ, Chipev N, editors. Ecology of the City of Sofia. Species and communities in an urban environment. Sofia-Moscow: Pensoft; 2004; p. 299-306.

Ion M. Centipedes from urban environments. In: Onete M, editor. Species monitoring in the central parks of Bucharest. Bucharest: Ars Docendi, Universitatea din Bucureşti; 2008; p. 79-83.

Nefediev PS, Tuf IH, Farzalieva GSh. Centipedes from urban areas in southwestern Siberia, Russia (Chilopoda). Part 1. Lithobiomorpha. Arthropoda Sel. 2016;25(3):257-66. https://doi.org/10.15298/arthsel.25.3.04

Nefediev PS, Tuf IH, Farzalieva GSh. Centipedes from urban areas in southwestern Siberia, Russia (Chilopoda). Part 2. Geophilomorpha. Arthropoda Sel. 2017;26(1):8-14. https://doi.org/10.15298/arthsel.26.1.02

Voigtländer K. Chilopoda - Ecology. In: Minelli A, editor. Treatise on zoology - anatomy, taxonomy, biology. The Myriapoda Vol 1. Leiden: Brill; 2011. p. 309-25. https://doi.org/10.1163/9789004188266_016

Lanno R, Wells J, Conder J, Bradham K, Basta N. The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf. 2004;57(1):39-47. https://doi.org/10.1016/j.ecoenv.2003.08.014

Shuo Yu. Bioaccumulation of metals in earthworms. [dissertation]. [Columbus]: Ohio State University. 2009. 173p.

Blasco J, Chapman P, Campana O, Hampel M, editors. Marine ecotoxicology: current knowledge and future issues. 1st ed. Amsterdam: Elsevier; 2016. 334 p.

Yang S, Zhai SW, Shepherd BS, Binkowski FP, Hung SSO, Sealey WM, Deng DF. Determination of optimal feeding rates for juvenile lake sturgeon (Acipenser fulvescens) fed a formulated dry diet. Aquac Nutr. 2019;25(6):1171-82. https://doi.org/10.1111/anu.12932

Bulak P, Walkiewicz A, Brzezińska M. Plant growth regulators-assisted phytoextraction. Biol Plant. 2014;58:1-8. https://doi.org/10.1007/s10535-013-0382-5

Asif N, Malik MF, Chaudhry FN. A review of on environmental pollution bioindicators. Pollution. 2018;4(1):111-8.

Maksimović ZJ, Đujić I, Jović V, Ršumović M. Selenium deficiency in Yugoslavia. Biol Trace Elem Res. 1992;33:187-96. https://doi.org/10.1007/BF02784022

Jagodić J, Rovčanin B, Borković-Mitić S, Vujotić L, Avdin V, Manojlović D, Stojsavljević A. Possible zinc deficiency in the Serbian population: examination of body fluids, whole blood, and solid tissues. Environ Sci Pollut Res Int. 2021;28:47439-46. https://doi.org/10.1007/s11356-021-14013-2

Bai Y, Wang Q, Liao K, Jian Z, Zhao C, Qu J. Fungal community as a bioindicator to reflect anthropogenic activities in a river ecosystem. Front Microbiol. 2018;9:3159. https://doi.org/10.3389/fmicb.2018.03152

Arnot JA, Arnot MI, Mackay D, Couillard Y, MacDonald D, Bonnell M, Doyle P. Molecular size cutoff criteria for screening bioaccumulation potential: fact or fiction? Integr Environ Assess Manag. 2009;6(2):210-24.

Lemos MFL, van Gestel CAM, Soares AMVM. Reproductive toxicity of the endocrine disrupters vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille, 1804). Chemosphere. 2010;78(7):907-13. https://doi.org/10.1016/j.chemosphere.2009.10.063

Sochová I, Hofman J, Holoubek I. Using nematodes in soil ecotoxicology. Environ Int. 2006;32(3):374-83. https://doi.org/10.1016/j.envint.2005.08.031

Eom IC, Rast C, Veber AM, Vasseur P. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol Environ Saf. 2007;67(2):190-205. https://doi.org/10.1016/j.ecoenv.2006.12.020

Hunter BA, Johnson MS, Thompson DJ. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. II. Invertebrates. J Appl Ecol. 1987;24(2):587-99. https://doi.org/10.2307/2403895

Kania G. Metals content in the millipede Ommatoiulus sabulosus (Linnaeus 1758); Arthropoda: Diplopoda. Och Środ Zas Nat. 2010;43:17-25.

Gräff S, Berkus M, Alberti G, Köhler HR. Metal accumulation strategies in saprophagous and phytophagous soil invertebrates: a quantitative comparison. Biometals. 1997;10:45-53. https://doi.org/10.1023/A:1018366703974

Köhler HR, Körtje KH, Alberti G. Content, absorption quantities and intracellular storage sites of heavy metals in Diplopoda (Arthropoda). Biometals. 1995;8:37-46. https://doi.org/10.1007/BF00156156

Hobbelen PHF, van den Brink PJ, Hobbelen JF, van Gestel CAM. Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area. Soil Biol Biochem. 2006;38(7):1596-1607. https://doi.org/10.1016/j.soilbio.2005.11.010

Downloads

Published

2022-10-05

How to Cite

1.
Mitić B, Borković-Mitić S, Stojsavljević A, Stojanović D, Pavlović S, Vasiljević L, Ristić N. Metal and metalloid bioaccumulation in three centipedes (Chilopoda). Arch Biol Sci [Internet]. 2022Oct.5 [cited 2024Feb.26];74(3):207-15. Available from: https://serbiosoc.org.rs/arch/index.php/abs/article/view/7783

Issue

Section

Articles

Most read articles by the same author(s)