Metformin attenuates carotid neointimal hyperplasia by modulating the vascular smooth muscle cell phenotype transformation through upregulation of TET2, Nur77 and calponin
DOI:
https://doi.org/10.2298/ABS201103009LKeywords:
Metformin, VSMCs, TET2, Nur77, neointimaAbstract
Paper description:
- Metformin is used to treat type 2 diabetes based on its cardiovascular safety. Metformin modulates the proliferation and migration of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are unclear.
- Metformin inhibited VSMC proliferation and migration and upregulated the expression of Nur77, TET2 and calponin in vitro, it increased the expression of Nur77, TET 2 and calponin, and reduced the the number of PCNA+ cells and the expression of MMP-9, preventing neointima hyperplasia in the carotid artery in the balloon injury model in vivo.
- This study provides a concept for a strategy for metformin use for treating cardiovascular diseases.
Abstract: Metformin is a drug used to treat type 2 diabetes based on its effectiveness as well as cardiovascular safety. Metformin has been shown to modulate proliferation and migration of vascular smooth muscle cells (VSMCs), but the underlying mechanisms of the effect of metformin on VSMC function remains unclear. We found that metformin inhibits VSMC proliferation and migration and upregulates the expression of nuclear receptor subfamily 4 group A member 1 (Nur77), ten-eleven translocation 2 (TET2), and calponin in vitro. In the carotid artery balloon injury model of rats, metformin effectively prevented neointima hyperplasia in the carotid artery, including neointimal thickness, increased neointimal area, and the neointimal area/medial area ratio. It also reduced the number of proliferating cell nuclear antigen (PCNA)+ cells and increased the expression of Nur77, calponin and alpha-smooth muscle actin (α-SMA). These results show that metformin attenuates neointimal hyperplasia in balloon-injured carotid arteries via increased expression of TET2, Nur77 and calponin, and reduced expression of matrix metallopeptidase 9 (MMP-9).
Downloads
References
Pant R, Marok R, Klein LW. Pathophysiology of coronary vascular remodeling: relationship with traditional risk factors for coronary artery disease. Cardiol Rev. 2014;22(1):13-16.
Zucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2015;58(3):429-42.
Whittington HJ, Hall AR, McLaughlin CP, Hausenloy DJ, Yellon DM, Mocanu MM. Chronic metformin associated cardioprotection against infarction: Not just a glucose lowering phenomenon. Cardiovasc Drugs Ther.2013;27(1):5-16.
Cheng YY, Leu HB, Chen TJ, Chen CL, Kuo CH, Lee SD, Kao CL. Metformin-inclusive therapy reduces the risk of stroke in patients with diabetes: a 4-year follow-up study. J Stroke Cerebrovasc Dis. 2014;23(9): e99-105.
Lu JX, Ji JZ, Meng H, Wang D, Jiang B, Liu LX, Randell E, Adeli K, Meng QH. The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol. 2013;12:58.
Deng M, Su D, Xu S, Little PJ, Feng X, Tang L, Shen A. Metformin and vascular diseases: A focused review on smooth muscle cell function.Front Pharmacol. 2020;11:635.
Zhou DM, Ran F,Ni HZ,Sun LL, Xiao L,Li LX, Li WD.Metformin inhibits high glucose-induced smooth muscle cell proliferation and migration. Aging (Albany NY). 2020;12(6):5352-61.
Li S, Shi Y, Liu P, Song Y, Liu Y, Ying L, Quan K, Yu G, Fan Z, Zhu W. Metformin inhibits intracranial aneurysm formation and progression by regulating vascular smooth muscle cell phenotype switching via the AMPK/ACC pathway. J Neuroinflammation. 2020;17(1):191.
Hao B, Xiao Y, Song F, Long X, Huang J, Tian M, Deng S, Wu Q. Metformin-induced activation of AMPK inhibits the proliferation and migration of human aortic smooth muscle cells through upregulation of p53 and IFI16. Int J Mol Med. 2018;41(3):1365-76.
Liu Y, Peng W, Qu K, Lin X, Zeng Z, Chen J, Wei D, Wang Z. TET2: A novel epigenetic regulator and potential intervention target for atherosclerosis. DNA Cell Biol. 2018;37(6): 517-23.
Li GH, Peng J, Liu YH, Li XH, Yang Q, Li YQ, Tang ZH, Wang Z, Jiang ZS, Wei DH. Oxidized low-densitylipoprotein inhibits THP-1-derived macrophage autophagyvia TET2 down-regulation. Lipids. 2015;50:177–83.
Peng J, Tang ZH, Ren Z, He B, Zeng Y, Liu LS, Wang Z, Wei DH, Zheng XL, Jiang ZS. TET2 protects against oxLDL-induced HUVEC dysfunction by upregulating the CSE/H(2)S system. Front Pharmacol. 2017;8:486.
Chen J, Zhang J, Wu J, Zhang S, Liang Y, Zhou B, Wu P, Wei D.. Low shear stress induced vascular endothelial cell pyroptosis by TET2/SDHB/ROS pathway. Free Radic Biol Med. 2021;162:582-91.
Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC,Raja Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, Vuong J, Jacob S, Muralidhar V, Robertson AAB, Cooper MA, Andrés V, Hirschi KK, Martin KA, Walsh K. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:8 42–7.
Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, Hwa J, Yu J, Martin KA. Ten- eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation. 2013;128(18):2047-57.
Fernandez P M,Brunel F,Jimenez MA,Saez JM,Cereghini S,Zakin MM. Nuclear receptors Nor1 and NGFI-B/Nur77 play similar, albeit distinct, roles in the hypothalamo-pituitary-adrenal axis. Endocrinology. 2000 ;141(7):2392-400.
Wang LY. Regulation of vascular smooth muscle cell proliferation by nuclear orphan receptor Nur77. Mol Cell Biochem. 2010;341(1-2):159-66.
You B. Jiang, YY, Chen S, Yan G, Sun J. The orphan nuclear receptor Nur77 suppresses endothelial cell activation through induction of IkappaB alpha expression. Circ Res. 2009; 104(6):742-9.
Chen JH, Jia JG, Ma LL, Li BY, Qin Q, Qian JY, Ge JB. Nur77 deficiency exacerbates cardiac fibrosis after myocardial infarction by promoting endothelial-to-mesenchymal transition J Cell Physiol. 2021;236(1): 495- 506.
van Tiel CM, de Vries CJ. NR4All in the vessel wall. J Steroid Biochem Mol Biol. 2012;130(3-5):186-93.
u YW, Zhang P, Yang JY, Huan JL, Ma X, Li SF, Zhao JY, Hu YR, Wang YC, Gao JJ, Sha YH, Zheng F, Wang Q. Nur77 decreases atherosclerosis progression in apoE(-/-) mice fed a high- fat/ high- cholesterol diet. PLoS One. 2014;9(1):e87313.
Cui ML, Cai ZH, Chu SH, Sun Z, Wang XL, Hu LH, Yi J, Shen LH, He B. Orphan nuclear receptor Nur77 inhibits Angiotensin II-Induced vascular remodeling via down- regulation of β-catenin. Hypertension. 2016;67(1):153-62.
Yu Y, Cai ZH, Cui ML, Nie P, Sun Z, Sun SQ, Chu SC, Wang XL, Hu H, Yi J, Shen LH, He B. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice. Int J Mol Med. 2015;36(6):1547-55.
Zhang W, Trebak M. Vascular balloon injury and intraluminal administration in rat carotid artery. J Vis Exp. 2014;23(94):52045.
Tan JJ, Xie YL, Yao AH, Qin YC, Li L, Shen L, Zhang XQ, Xu CF, Jiang XS, Wang AJ, Yan ZQ. Long noncoding RNA-dependent regulation of vascular smooth muscle cell proliferation and migration in hypertension. Int J Biochem Cell Biol. 2020;118:105653.
Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017;27(8):657-69.
Chen Q, Jin M,Yang F, Zhu J, Xiao Q, Zhang L. Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm. 2013;2013:928315.
Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem. 2014;64:1-72.
Mason DP, Kenagy RD, Hasenstab D, Bowen-Pope DF, Seifert RA, Coats S, Hawkins SM, Clowes AW. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res.1999; 85(12): 1179-85.
Galis ZS, Johnson C, Godin D, Magid R, Shipley JM, Senior RM, Ivan E. Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res. 2002;91 (9):852-59.
Duraisamy AJ, Mishra M, Kowluru RA. Crosstalk between histone and DNA methylation in regulation of retinal matrix metalloproteinase-9 in diabetes. Invest Ophthalmol Vis Sci. 2017;58 (14):6440-8.
Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A. Effect of metformin on the proliferation, migration, and MMP-2 and -9 expression of human umbilical vein endothelial cells. Mol Med Rep. 2012;5 (4):1068-74.
Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14 (6):341-56.
Zadeh FJ, Akbari T, Zayeri ZD, Samimi A, Davari N, Rezaeeyan H. The role of molecular mechanism of Ten Eleven Translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports. 2020;47:5503-9.
Potus F, Pauciulo MW, Cook EK, Zhu N, Hsieh A, Welch CL, Shen Y, Tian L, Lima P, Mewburn J, D'Arsigny CL, Lutz KA, Coleman AW, Damico R, Snetsinger B, Martin AY, Hassoun PM, Nichols WC, Chung WK, Rauh MJ, Archer SL. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation. 2020;141(24):1986-2000.
Li B, Zang GY, Zhong W, Chen R, Zhang Y, Yang P, Yan JC .Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferring from endothelial cell-derived exosomes to vascular smooth muscle cells. Biomed Pharmacother. 2020;121:109593.
Yu Y, Yan R, Chen X, Sun T, Yan J. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol Cell Biochem. 2020;475(1-2):127-35.
Maxwell MA, Muscat GE. The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal. 2006;4: e002.
Milbrandt, J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron. 1988; 1 (3): 183-8.
Pei L, Castrillo A, Tontonoz P. Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77. Mol Endocrino l. 2006;20(4): 786-94.
Maruyama K, Tsukada T, Ohkura N, Bandoh S, Hosono T, Yamaguchi K. The NGFI-B subfamily of the nuclear receptor superfamily (review). Int J Oncol.1998;12(6):1237-43.
Koenis DS, Medzikovic L, van Loenen PB, van Weeghel M, Huveneers S, Vos M, Evers-van Gogh IJ, Van den Bossche J, Speijer D, Kim Y, Wessels L, Zelcer N, Zwart W, Kalkhoven E, de Vries CJ. Nuclear receptor Nur77 limits the macrophage inflammatory response through transcriptional reprogramming of mitochondrial metabolism. Cell Rep. 2018;24(8): 2127-40.
Liu Y, Zhang J, Yi B, Chen M, Qi J, Yin Y, Lu X, Jasmin JF, Sun J Nur77 suppresses pulmonary artery smooth muscle cell proliferation through inhibition of the STAT3/Pim-1/NFAT pathway. Am J Respir Cell Mol Biol. 2014;50(2):379-88.
Huo Y, Yi B, Chen M, Wang ND, Chen PG, Guo C, Sun JX. Induction of Nur77 by hyperoside inhibits vascular smooth muscle cell proliferation and neointimal formation. Biochem Pharmacol, 2014; 92(4): 590-8.
Kurakula K, Sun XQ, Happé C, da Silva Goncalves Bos D, Szulcek R, Schalij I, Wiesmeijer KC, Lodder K, Tu L, Guignabert C, de Vries CJM, de Man FS, Noordegraaf AV, Dijke PT, Goumans MJ, Bogaard HJ. Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. Eur Respir J. 2019;54(3):1802400.
Bruno S, Gorczyca W, Darzynkiewicz Z. Effect of ionic strength in immunocytochemical detection of the proliferation associated nuclear antigens p120, PCNA, and the protein reacting with Ki-67 antibody. Cytometry.1992;13(5):496-501.
Wu, X., Lu, Q. Expression and significance of α-SMA and PCNA in the vascular adventitia of balloon-injured rat aorta. Exp. Ther. Med. 2013;5:1671-6.
Kreipke CW, Rafols JA. Calponin control of cerebrovascular reactivity: therapeutic implications in brain trauma. J Cell Mol Med. 2009;13(2):262-9.
Blascke de Mello MM, Parente JM, Schulz R, Castro MM. Matrix metalloproteinase (MMP)-2 activation by oxidative stress decreases aortic calponin-1 levels during hypertrophic remodeling in early hypertension. Vascul Pharmacol. 2019;116:36-44.
Feng HZ, Wang H, Katsuhito Takahashi K, J-P Jin JP. Double deletion of calponin 1 and calponin 2 in mice decreases systemic blood pressure with blunted length-tension response of aortic smooth muscle J Mol Cell Cardiol. 2019;129:49-57.
Belo VA, Parente JM, Tanus-Santos JE, Castro MM. Matrix metalloproteinase (MMP)-2 decreases calponin-1 levels and contributes to arterial remodeling in early hypertension. Biochem Pharmacol.2016;118:50-8.
Long XC, Slivano OJ, Cowan SL, Georger MA, Lee TH, Miano JM. Smooth Muscle CalponinAn Unconventional CArG-Dependent Gene That AntagonizesNeointimal Formation. Arterioscler Thromb Vasc Biol. 2011;31:2172-80.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Archives of Biological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.