Agmatine reduces chlorpromazine prooxidant effects in rat hippocampus and striatum
DOI:
https://doi.org/10.2298/ABS210429028DKeywords:
chlorpromazine, agmatine, oxidative stress, hippocampus, striatumAbstract
Paper description:
- Administration of the antidepressant drug chlorpromazine is linked to increased oxidative stress in the hippocampus and striatum. Agmatine is an adjunct to chlorpromazine therapy used to neutralize its side effects.
- The ability of agmatine to diminish chlorpromazine prooxidant effects was examined in male rats. Antioxidant enzyme activities were measured in the hippocampus and striatum.
- Combined chlorpromazine/agmatine treatment decreased the pro-oxidative effects of chlorpromazine.
- These results validate the coadministration of chlorpromazine and agmatine as a treatment strategy.
Abstract: The use of the antidepressant drug chlorpromazine (CPZ) is linked to the occurrence of oxidative stress in some brain structures. Thus, overcoming the side effects of CPZ is of great importance. Because agmatine (AGM) can act as a free radical scavenger, it is an interesting compound as an adjunct to CPZ therapy. The aim of our study was to investigate the enzymatic parameters of oxidative stress in the hippocampus and striatum of rats after CPZ treatment, and the potential protective effects of AGM. Rats were injected as follows with (i) 1 mL/kg b.w. saline; (ii) a single intraperitoneal (i.p.) dose of CPZ (38.7 mg/kg); (iii) CPZ (38.7 mg/kg) and AGM (75 mg/kg); (iv) AGM (75 mg/kg). CPZ induced an increase in superoxide anion radical (O2•-) concentration, while the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), were lowered in both the hippocampus and striatum. Cotreatment with CPZ and AGM protected the examined brain structures by reversing the antioxidant enzyme activities to the control values. Following CPZ treatment, the effects were more pronounced for SOD and GPx in the hippocampus, and for SOD, CAT and GPx in the striatum. The full effect of restored superoxide production was achieved in the striatum, which points to the role of CAT. The obtained results suggest that CPZ in combination with AGM may be considered as a new treatment strategy.
Downloads
References
Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature. 2010;468:203-12. https://doi.org/10.1038/nature09563
Brunton L, Chabner B, Knollman B. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill Professional; 2010. 1984 p.
Breitbart W, Marotta R, Platt MM, Weisman H, Derevenco M, Grau C, Corbera K, Raymond S, Lund S, Jacobson P. A double-blind trial of haloperidol, chlorpromazine, and lorazepam in the treatment of delirium in hospitalized AIDS patients. Am J Psychiatry. 1996;153(2):231-7. https://doi.org/10.1176/foc.3.2.333
Seeman P, Lee T. Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188:1217-9. https://doi.org/10.1126/science.1145194
Patterson A, Schenk O. Effects of acute and chronic systemic administration of some typical antipsychotic drugs on turnover of dopamine and potassium ion induced release of dopamine in the striatum of the rat in vivo. Neuropharmacol. 1991;30:943-52. https://doi.org/10.1016/0028-3908(91)90107-m
Henderson DC. Schizophrenia and comorbid metabolic disorders. J Clin Psychiatry. 2005;66(6):11-20.
McIntyre S, McCann M, Kennedy H. Antipsychotic metabolic effects: weight gain, diabetes mellitus, and lipid abnormalities. Can J Psychiatry. 2001;46(3):273-81. https://doi.org/10.1177/070674370104600308
Newcomer JW. Abnormalities of glucose metabolism associated with atypical antipsychotic drugs. J Clin Psychiatry. 2004;65(18):36-46.
Lohr B, Underhill S, Moir S, Jeste D. Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry. 1990;28:535-9. https://doi.org/10.1016/0006-3223(90)90490-s
Peet M, Laugharne J, Rangarajan N, Reynolds P. Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol. 1993;8:(3)151-3. https://doi.org/10.1097/00004850-199300830-00003
Parikh V, Khan M, Mahadik S. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res. 2003;37:43-51. https://doi.org/10.1016/s0022-3956(02)00048-1
Atama C, Nnaji E, Ezeoyili I, Udeani F, Onovo C, Ossai N, Aguzie I, Nwani C. Neuromodulatory and oxidative stress evaluations in African catfish Clarias gariepinus exposed to antipsychotic drug chlorpromazine. Drug Chem Toxicol. 2020;22:1-7. https://doi.org/10.1080/01480545.2020.1822391
Mahadik SP, Sitasawad S, Mulchandani M. Membrane peroxidation and the neuropathology of schizophrenia. In: Peet M, Glen I, Horribin DF, editors. Phospholipid spectrum disorders in psychiatry. Lancashire: Marius Press; 1999. p. 99-111.
Tabor C, Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749-90. https://doi.org/10.1146/annurev.bi.53.070184.003533
Galgano F, Caruso M, Favati F, Romano P. HPLC determination of agmatine and other amines in wine. Int J Sci Wine. 2003;37:237-42. https://doi.org/10.20870/oeno-one.2003.37.4.959
Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 2020;21(5):187-93. https://doi.org/10.1016/S0165-6147(00)01460-7
Akasaka N, Fujiwara S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids. 2020;52:181-97. https://doi.org/10.1007/s00726-019-02720-7
El-Agamy D, Makled M, Gamil N. Protective effects of agmatine against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Inflammopharmacology. 2014;22(3):187-94. https://doi.org/10.1007/s10787-013-0188-2
Freitas A, Bettio L, Neis V, Santos D, Ribeiro C, Rosa P, Farina M, Rodrigues A. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Bio Psychiatry. 2014;3(50):143-50. https://doi.org/10.1016/j.pnpbp.2013.12.012
Gilad G, Gilad V. Long-Term (5 Years), high daily dosage of dietary agmatine-evidence of safety. J Med Food. 2014;17(11):1256-9. https://doi.org/10.1089/jmf.2014.0026
Lowry OH, Rosenbrongh NJ, Farr AL, Randal RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265-75.
Auclair C, Voisin E. Nitroblue tetrazolium reduction. In: Greenwald RA, editor. Handbook of Methods for Oxygen Radical Research. Florida: CRC Press; 1985. p. 123-32.
Misra P, Fridovich I.The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170-5. https://doi.org/10.1016/s0021-9258(19)45228-9
Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143-51. https://doi.org/10.1016/0009-8981(91)90067-m
Maral J, Puget K, Michelson AM. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochem Biophys Res Commun. 1977;77(4):1525-35. https://doi.org/10.1016/s0006-291x(77)80151-4
Freifelder D. Physical biochemistry–application to biochemistry and molecular biology. San Francisco: Freeman WH and Co.;1976. 624 p.
Dejanovic B, Stevanovic I. A clinical and experimental study of the chlorpromazine toxicity. Saarbrücken: Lap Lambert Academic Publishing; 2019; 108 p.
Mahadik S, Evans D, Lal H. Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(3):463-93. https://doi.org/10.1016/s0278-5846(00)00181-0
Antherieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B. Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human Hepa RG cells. Hepatology. 2013;57:1518-29. https://doi.org/10.1002/hep.26160
Dejanović B, Ninković M, Stojanović I, Lavrnja I, Radičević T Vuković-Dejanović V, Stevanović I. Agmatine prevents acute chlorpromazine-induced neurotoxicity in rats. Arh Farm. 2015;65:329-49. https://doi.org/10.5937/arhfarm1506329d
Naidu S, Singh A, Kulkarni K. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol. 2002;136:193-200. https://doi.org/10.1038/sj.bjp.0704717
Pillai A, Parikh V, Terry V, Mahadik P. Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res. 2007;41:372-86. https://doi.org/10.1016/j.jpsychires.2006.01.011
Dejanović B, Vuković-Dejanović V, Stevanović I, Stojanović I, Mandić Gajić G, Dilber S. Oxidative stress induced by chlorpromazine in patients treated and acutely poisoned with the drug. Vojnosanit Pregl. 2016;73(4):312-7. https://doi.org/10.2298/vsp140423047d
Hu J, Kulkarni A. Metabolic fate of chemical mixtures. I. "Shuttle Oxidant" effect of lipoxygenase-generated radical of chlorpromazine and related phenothiazines on the oxidation of benzidine and other xenobiotics. Teratog Carcinog Mutagen 2000;20(4):195-208. https://doi.org/10.1002/1520-6866(2000)20:4<195::aid-tcm2>3.0.co;2-2
Lopert P, Patel M. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption. Redox Biol. 2014;2:667-72. https://doi.org/10.1016/j.redox.2014.04.010
Hodgson EK, Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation. Biochemistry. 1975;14(24):5299-303. https://doi.org/10.1021/bi00695a011
Halliwell B. Superoxide dismutase, catalase, and glutathione peroxidase: Solutions to the problem of living with oxygen. New Phytol. 1974;73:1075-86. https://doi.org/10.1111/j.1469-8137.1974.tb02137.x
Saint-Denis M, Labrot F, Narbonne JF, Ribera D. Glutathione, glutathione-related enzymes, and catalase activities in the earthworm Eisenia fetida Andrei. Arch Environ Contam Toxicol. 1998;35:602-14. https://doi.org/10.1007/s002449900422
Barua S, Kim J, Kim J, Kim J, Lee J. Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res. 2019;44:735-50. https://doi.org/10.1007/s11064-018-02712-1
El-Awady M, Nader M, Sharawy M. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model. Environ Toxicol Pharmacol. 2017;55:74-80. https://doi.org/10.1016/j.etap.2017.08.009
Sharawy M, Abdelrahman R, El-Kashef D. Agmatine attenuates rhabdomyolysis-induced acute kidney injury in rats in a dose dependent manner. Life Sci. 2018;208:79-86. https://doi.org/10.1016/j.lfs.2018.07.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Archives of Biological Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.