Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro


  • Oksana Mykchaylova 1. Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, 01601, Kyiv, Ukraine; 2. Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, 03056, Kyiv, Ukraine
  • Halyna Dubova Department of Food Technology, Poltava State Agrarian University, Poltava, Ukraine, 1/3 Skovorody, 36003, Poltava, Ukraine
  • Margarita Lomberg Department of Mycology, M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, 2, Tereshchenkivska, 01601, Kyiv, Ukraine
  • Anatoliy Negriyko Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauki, 46, 03039, Kyiv, Ukraine
  • Natalia Poyedinok Faculty Biomedical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, 37, Beresteisky Avenue, 03056, Kyiv, Ukraine



LED, mycelial mass, polysaccharides, fatty acids


Paper description:

  • Light is a regulator of the biosynthetic activity of mushrooms but its exact influence remains unclear.
  • An LED matrix-based artificial lighting system was created to study how quasi monochromatic light affects mycelium’s biosynthetic activity.
  • New data on photostimulatory modes of biosynthetic activity in vitro for Hericium erinaceus are presented. Brief exposure of the mycelium to blue and red light wavelength enhanced biosynthetic activity and shortened the cultivation of the investigated strain.
  • Our results enhance erinaceus cultivation biotechnology, boosting process efficiency and yielding more mycelial mass, polysaccharides, and fatty acids as the end product.

Abstract: Understanding the impact of light on the physiology and metabolism of edible and medicinal mushrooms can step up the technologies aimed at obtaining bioactive compounds. The article presents data on the influence of low-intensity quasimonochromatic light on the biosynthetic activity of Hericium erinaceus edible medicinal mushrooms in vitro. An artificial lighting setup based on light-emitting diode (LED) arrays with wavelengths λ=470 nm (blue), λ=530 nm (green), and λ=650 nm (red) was used. An argon gas laser served as a coherent visible light source at a wavelength of 488 nm. The mycelium of H. erinaceus irradiation by low-intensity light at wavelengths of 488 nm, 470 nm, and 650 nm reduced the lag phase and increased the culture’s growth rate. The highest biomass yield (12.1 g/L) on the 12th day of cultivation was achieved with light irradiation at a wavelength of 488 nm. Irradiation of the mycelium of H. erinaceus in all used wavelength ranges led to an increase in the synthesis of polysaccharides and unsaturated fatty acids. The modes of irradiation with laser light λ=488 nm and LED λ=470 nm were the most effective.


Download data is not yet available.


Deshmukh SK, Sridhar KR, Badalyan SM, editors. Fungal biotechnology: prospects and avenues. 1st edition. CRC Press; 2022.

Badalyan SM, Rapior S. Perspectives of biomedical application of macrofungi. Curr Trends Biomed Eng Biosci. 2020;19(5):556024.

Zhang Y, Wang D, Chen Y, Liu T, Zhang S, Fan H, Liu H, Li Y. Healthy function and high valued utilization of edible fungi. Food Sci Hum Wellness. 2021;10:408-20.

Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr. 2022;9:1050099.

Riaz S, Ahmad A, Farooq R, Ahmed M, Shaheryar M, Hussain M. Edible mushrooms, a sustainable source of nutrition, biochemically active compounds and its effect on human health Funct Food. 2022:102694.

Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. In: Agrawal D, Dhanasekaran M, editors. Medicinal mushrooms. Singapore: Springer; 2019.

Friedman M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J Agric Food Chem. 2015;63:7108-23.

Zhou Y, Chu M, Ahmadi F, Agar OT, Barrow CJ, Dunshea FR, Suleria HA. A Comprehensive Review on Phytochemical Profiling in Mushrooms: Occurrence, Biological Activities, Applications and Future Prospective. Food Reviews International. 2023:1-28.

Sokół S, Golak-Siwulska I, Sobieralski K, Siwulski M, Górka K. Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum. Acta Mycologica 2016;50:1069.

Dmytriev OP. Botany and mycology: modern horizons. Kyiv: Nash format; 2021:564 p.

Yang F, Wang H, Feng G, Zhang S, Wang J, Cui L. Rapid identification of chemical constituents in Hericium erinaceus based on LC-MS/MS metabolomics. J Food Qual. 2021;2021:55606261-10.

Wang M, Gao Y, Xu D, Konishi T, Gao Q. Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines. Food Funct. 2014;5(12):3055-64.

Hetland G, Tangen JM, Mahmood F, Mirlashari MR, Nissen-Meyer LSH, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E. Antitumor, Anti-Inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutrients.2020;12(5):1339.

Lew SY, Yow YY, Lim LW, Wong KH. Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich’s ataxia patient. Food Sci. Technol. 2020;40:264-72.

Narmuratova Zh, Bisko N, Mustafin K, Al-Maali G, Kerner A, Bondaruk S, et al. Screening of medicinal mushroom strains with antimicrobial activity and parameters on intracellular polysaccharide production in submerged culture of polysaccharides production. Turk J Biochem. 2023.

Lee W, Fujihashi A, Govindarajulu M, Ramesh S, Deruiter J, Majraski M, Almaghrabi M, Nadar R, Moore T, Agranal DC, Dhanasekaran M.Role of Mushrooms in Neurodegenerative Diseases. In: Agrawal D, Dhanasekaran M, editors. Medicinal Mushrooms. Singapore: Springer; 2019. p. 223-50.

Zhang CC, Cao CY, Kubo M, Harada K, Yan XT, Fukuyama Y, Gao JM. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway. Int J Mol Sci. 2017;18(8):1659.

Poyedinok NL. Use of Artificial Light in Mushroom Cultivation. Biotechnol Acta. 2013;6(6):58-70.

Jang MJ, Lee YH, Ju YC, Kim SM, Koo HM. Effect of Color of Light Emitting Diode on Development of Fruit Body in Hypsizygus marmoreus. Mycobiology. 2013;41(1):63-6.

Corrochano LM, Galland P. Photomorphogenesis and gravitropism in fungi. In The Mycologia 2006;1: Growth, Differentiation and Sexuality. Berlin; Springer-Verlag, p. 233-59.

Poyedinok NL, Mykhaylova OB, Negriyko AM, Dudka IA, Vasilyeva BF, Efremenkova OV. Induction of antimicrobial activity of some macromycetes by low-intensity light. Biotechnologia Acta 2015;8(1):63-79.

Poyedinok N, Negriyko A, Mikhailova O. Effects of light wavelengths and coherence on basidiospores germination. J Microbiol Biotechnol Food Sci. 2021:4(4):352-7.

Avalos J, Limón MC. Biological roles of fungal carotenoids. Curr Genet. 2015;61:309-24.

Kojima M, Kimura N, Miura R. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Sci Rep 2015;5:8630.

Halabura MIW, Avelino KV, Araújo NL, Kassem ASS, Seixas FAV, Barros L, Fernandes Â, Liberal Â, Ivanov M, Soković M, Linde GA, Colauto NB, do Valle JS. Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass. Photochem Photobiol Sci. 2023;22(3):669-86.

Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol. 2010;47:930-38.

Castrillo M, García-Martínez J, Avalos J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol. 2013;79(8):2777-88.

Poyedinok NL, Potemkina JV, Buchalo AS, Negrijko AM. Stimulation with low-intensity laser light of basidiospore germination and growth of monocaryotic isolates in Medicinal Mushroom Hericium erinaсeus (Bull.:Fr.) Pers. (Aphyllophoromycetideae). Int J Med Mushrooms. 2000;2(4):339-42.

Poyedinok NL, Negrijko AM, Bisko N, Mykchaylova O, Potemkina JV. Energy Efficient Systems of Artificial Lighting in Technologies of Edible and Medicinal Mushroom Cultivation. Nauka ta innovacii. 2013;9(3):46-56.

IBK Mushroom Culture Collection [Internet]. Version 1.7. Copenhagen (Denmark): GBIF Norway. c2020 - [Cited 2023 Nov 16]. Available from:

Mykchaylova O, Lomberg M, Bisko N. Verification and Screening of Biotechnologically Valuable Macromycetes Species in vitro. In: Development of modern science: the experience of European countries and prospects for Ukraine. Baltija Publishing; 2019. p. 354-75.

Bisko N, Mustafin K, Al-Maali G, Suleimenova Z, Lomberg M, Narmuratova Z, Mykchaylova O, Mytropolska N, Zhakipbekova A. Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes. Czech Mycol. 2020;72(1):1-17.

Corrochano LM. Light in the fungal world: From photoreception to gene transcription and beyond. Ann Rev Genet. 2019;53:149-70.

Yu Z, Fischer R. Light sensing and responses in fungi. Nat Rev Microbiol. 2019;17(1):25-36.

Idnurm B, Heitman J. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 2005;3(4):e95.

Sakamoto K, Jinno K, Sasaki K, Nogami H, Furusawa N, Ogawa T. Analysis on Genes Expressed during Photomorphogenesis of the Fruiting Bodies in Pholiota nameko. Shokubutsu Kankyo Kogaku. 2005;17(1):3-10.

Arjona D, Aragón C, Aguilera JA, Ramírez L, Pisabarro AG. Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus. Mycol Res. 2009;113(5):552-58.

Davies GJ, Williams SJ. Carbohydrate-active enzymes: sequences, shapes, contortions and cells. Biochem Soc Trans. 2016;44:79-8.

Poyedinok NL, Mykhailova, OB, Shcherba VV, Buchalo AS, Negriyko AM. Light Regulation of Growth and Biosynthetic Activity of Ling Zhi or Reishi of Medicinal Mushroom Ganoderma lucidum (W.Curt.: Fr.) P. Karst. (Aphyllophoro-mycetideae) in Pure Culture. Int J Med Mushr. 2008;10(4):368-78.

Poyedinok N., Mykchaylova OB, Dudka IA. Effect of Low-Intensity Laser Irradiation on the Cultivated Macromycetes Seed Culture Growth Activity. Microbiol Biotechnol. 2015;(1):77-86.

Huang MY, Lin KH, Lu CC, Chen LR, Hsiung TC, Chang WT. The intensity of blue light-emitting diodes influences the antioxidant properties and sugar content of oyster mushrooms (Lentinus sajor-caju). Scientia Horticulturae. 2017;218:8-13.

Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci. 2007;6(7):725-36.

Nakano Y, Fujii H, Kojima M. Identification of blue-light photoresponse genes in oyster mushroom mycelia. Biosci. Biotechnol. Biochem. 2010;74(10):2160-5.

Feng Y, Xu H, Sun Y, Xia R, Hou Z, Li YJ, Wang Y, Pan S, Li L, Zhao C, Ren H, Xin G. Effect of light on quality of preharvest and postharvest edible mushrooms and its action mechanism: A review.

Trends Food Sci Technol. 2023;139:104119.

Poyedinok NL, Negriyko AM, Mykhailova OB, Potemkina JV, Buchalo AS. Laser light applications in cultivation of some species of edible mushrooms. Biotechnology. 2003;3:66-78.

Yue Z, Zhang W, Liu W, Xu J, Liu W, Zhang X. Effect of Different Light Qualities and Intensities on the Yield and Quality of Facility-Grown Pleurotus eryngii. J Fungi. 2022;8(12):1244.

Namba K, Inatomi S, Mori K, Shimosaka M, Okazaki M. Effect of LED lights on fruit-body production in Hypsizygus marmoreus. Mushroom Sei Biotechnol. 2002;10:141-6.

Araújo NL, Avelino KV, Halabura MIW, Marim RA, Kassem ASS, Linde GA, Colauto NB, do Valle JS. Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation. Enzyme Microb Technol. 2021;149:109860.

Johnson M, Bradforf C. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J Glycomics Lipidomics. 2014;4(4).

Hossain S, Hashimoto M, Choudhury EK, Alam N, Hussain S, Hasan M, Choudhury SK, Mahmud I. Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin Exp Pharmacol Physiol. 2003;30(7):470-5.

Parikh P, McDaniel MC, Ashen MD, Miller JI, Sorrentino M, Chan V, Blumenthal RS, Sperling LS. Diets and cardiovascular disease: an evidence-based assessment. J Am Coll Cardiol. 2005;45(9):1379-87.

Mokochinski JB, López BGC, Sovrani V, Santa HSD, Gonzalez-Borrero PP, Sawaya ACHF, Torres YR. Production of Agaricus brasiliensis mycelium from food industry residues as a source of antioxidants and essential fatty acids. Int J Food Sci Technol. 2015;50(9):2052-8.

Degwert J, Jacob J, Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies. 1998; US Patent 5708028.

Barroetaveña C, Toledo CV. The nutritional benefits of mushrooms. In: Ferreira ICFR, Morales Gómez P, Barros L, editors. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. Chichester, UK: Wiley-Blackwell; 2017. p. 65-82.

Ribeiro B, Pinho PG, Andrade PB, Baptista P, Valentao P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem J. 2009;93:29-35.

Dubova H, Dotsenko N, Mykchaylova О, Poyedinok N. Study of Aromatic Components in the Course of Initiating Enzymatic Reactions in the Edible Mushroom Pleurotus ostreatus. Food Sci. Technol. 2021;15(4).

Dubova HYe, Bezusov AT, Biloshytska OK, Poyedinok NL. Application of Aroma Precursors in Food Plant Raw Materials: Biotechnological Aspect. Innov Biosyst Bioeng. 2022;6(3-4):94-109.

Sun H, Chen X, Xiang Y, Hu Q, Zhao L. Fermentation characteristics and flavor properties of H. erinaceus and Tremella fuciformis fermented beverage. Food Biosci. 2022;50:102017.

Zhao G, Liu C, Hadiatullah H, Yao Y, Lu F. Effect of Hericium erinaceus on bacterial diversity and volatile flavor changes of soy sauce. LWT. 2020; 139:110543.




How to Cite

Mykchaylova O, Dubova H, Lomberg M, Negriyko A, Poyedinok N. Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro. Arch Biol Sci [Internet]. 2023Dec.13 [cited 2024Apr.22];75(4):489-501. Available from:




Most read articles by the same author(s)