Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro
DOI:
https://doi.org/10.2298/ABS230821040MKeywords:
LED, mycelial mass, polysaccharides, fatty acidsAbstract
Paper description:
- Light is a regulator of the biosynthetic activity of mushrooms but its exact influence remains unclear.
- An LED matrix-based artificial lighting system was created to study how quasi monochromatic light affects mycelium’s biosynthetic activity.
- New data on photostimulatory modes of biosynthetic activity in vitro for Hericium erinaceus are presented. Brief exposure of the mycelium to blue and red light wavelength enhanced biosynthetic activity and shortened the cultivation of the investigated strain.
- Our results enhance erinaceus cultivation biotechnology, boosting process efficiency and yielding more mycelial mass, polysaccharides, and fatty acids as the end product.
Abstract: Understanding the impact of light on the physiology and metabolism of edible and medicinal mushrooms can step up the technologies aimed at obtaining bioactive compounds. The article presents data on the influence of low-intensity quasimonochromatic light on the biosynthetic activity of Hericium erinaceus edible medicinal mushrooms in vitro. An artificial lighting setup based on light-emitting diode (LED) arrays with wavelengths λ=470 nm (blue), λ=530 nm (green), and λ=650 nm (red) was used. An argon gas laser served as a coherent visible light source at a wavelength of 488 nm. The mycelium of H. erinaceus irradiation by low-intensity light at wavelengths of 488 nm, 470 nm, and 650 nm reduced the lag phase and increased the culture’s growth rate. The highest biomass yield (12.1 g/L) on the 12th day of cultivation was achieved with light irradiation at a wavelength of 488 nm. Irradiation of the mycelium of H. erinaceus in all used wavelength ranges led to an increase in the synthesis of polysaccharides and unsaturated fatty acids. The modes of irradiation with laser light λ=488 nm and LED λ=470 nm were the most effective.
Downloads
References
Deshmukh SK, Sridhar KR, Badalyan SM, editors. Fungal biotechnology: prospects and avenues. 1st edition. CRC Press; 2022. https://doi.org/10.1201/9781003248316
Badalyan SM, Rapior S. Perspectives of biomedical application of macrofungi. Curr Trends Biomed Eng Biosci. 2020;19(5):556024. https://juniperpublishers.com/ctbeb/CTBEB.MS.ID.556024.php
Zhang Y, Wang D, Chen Y, Liu T, Zhang S, Fan H, Liu H, Li Y. Healthy function and high valued utilization of edible fungi. Food Sci Hum Wellness. 2021;10:408-20. https://doi.org/10.1016/j.fshw.2021.04.003
Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr. 2022;9:1050099. https://doi.org/10.3389/fnut.2022.1050099
Riaz S, Ahmad A, Farooq R, Ahmed M, Shaheryar M, Hussain M. Edible mushrooms, a sustainable source of nutrition, biochemically active compounds and its effect on human health Funct Food. 2022:102694. https://www.intechopen.com/chapters/80889
Badalyan SM, Barkhudaryan A, Rapior S. Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. In: Agrawal D, Dhanasekaran M, editors. Medicinal mushrooms. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-6382-5_1
Friedman M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J Agric Food Chem. 2015;63:7108-23. https://doi.org/10.1021/acs.jafc.5b02914
Zhou Y, Chu M, Ahmadi F, Agar OT, Barrow CJ, Dunshea FR, Suleria HA. A Comprehensive Review on Phytochemical Profiling in Mushrooms: Occurrence, Biological Activities, Applications and Future Prospective. Food Reviews International. 2023:1-28. https://doi.org/101080/8755912920232202738
Sokół S, Golak-Siwulska I, Sobieralski K, Siwulski M, Górka K. Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum. Acta Mycologica 2016;50:1069. https://doi.org/10.5586/am.1069
Dmytriev OP. Botany and mycology: modern horizons. Kyiv: Nash format; 2021:564 p.
Yang F, Wang H, Feng G, Zhang S, Wang J, Cui L. Rapid identification of chemical constituents in Hericium erinaceus based on LC-MS/MS metabolomics. J Food Qual. 2021;2021:55606261-10. https://www.hindawi.com/journals/jfq/2021/5560626/
Wang M, Gao Y, Xu D, Konishi T, Gao Q. Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines. Food Funct. 2014;5(12):3055-64. https://doi.org/10.1039/c4fo00511b.
Hetland G, Tangen JM, Mahmood F, Mirlashari MR, Nissen-Meyer LSH, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E. Antitumor, Anti-Inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutrients.2020;12(5):1339. https://doi.org/10.3390/nu12051339
Lew SY, Yow YY, Lim LW, Wong KH. Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich’s ataxia patient. Food Sci. Technol. 2020;40:264-72. https://doi.org/10.1590/fst.09919
Narmuratova Zh, Bisko N, Mustafin K, Al-Maali G, Kerner A, Bondaruk S, et al. Screening of medicinal mushroom strains with antimicrobial activity and parameters on intracellular polysaccharide production in submerged culture of polysaccharides production. Turk J Biochem. 2023. https://doi.org/10.1515/tjb-2022-0235
Lee W, Fujihashi A, Govindarajulu M, Ramesh S, Deruiter J, Majraski M, Almaghrabi M, Nadar R, Moore T, Agranal DC, Dhanasekaran M.Role of Mushrooms in Neurodegenerative Diseases. In: Agrawal D, Dhanasekaran M, editors. Medicinal Mushrooms. Singapore: Springer; 2019. p. 223-50. https://doi.org/10.1007/978-981-13-6382-5_8
Zhang CC, Cao CY, Kubo M, Harada K, Yan XT, Fukuyama Y, Gao JM. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway. Int J Mol Sci. 2017;18(8):1659. https://doi.org/10.3390/ijms18081659
Poyedinok NL. Use of Artificial Light in Mushroom Cultivation. Biotechnol Acta. 2013;6(6):58-70.
Jang MJ, Lee YH, Ju YC, Kim SM, Koo HM. Effect of Color of Light Emitting Diode on Development of Fruit Body in Hypsizygus marmoreus. Mycobiology. 2013;41(1):63-6. https://doi.org/10.5941/MYCO.2013.41.1.63
Corrochano LM, Galland P. Photomorphogenesis and gravitropism in fungi. In The Mycologia 2006;1: Growth, Differentiation and Sexuality. Berlin; Springer-Verlag, p. 233-59. https://doi.org/10.1007/3-540-28135-5_13
Poyedinok NL, Mykhaylova OB, Negriyko AM, Dudka IA, Vasilyeva BF, Efremenkova OV. Induction of antimicrobial activity of some macromycetes by low-intensity light. Biotechnologia Acta 2015;8(1):63-79. https://doi.org/10.15407/biotech8.01.063
Poyedinok N, Negriyko A, Mikhailova O. Effects of light wavelengths and coherence on basidiospores germination. J Microbiol Biotechnol Food Sci. 2021:4(4):352-7. https://doi.org/10.15414/jmbfs.2015.4.4.352-357
Avalos J, Limón MC. Biological roles of fungal carotenoids. Curr Genet. 2015;61:309-24. https://doi.org/10.1007/s00294-014-0454-x
Kojima M, Kimura N, Miura R. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid. Sci Rep 2015;5:8630. https://doi.org/10.1038/srep08630
Halabura MIW, Avelino KV, Araújo NL, Kassem ASS, Seixas FAV, Barros L, Fernandes Â, Liberal Â, Ivanov M, Soković M, Linde GA, Colauto NB, do Valle JS. Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass. Photochem Photobiol Sci. 2023;22(3):669-86. https://doi.org/10.1007/s43630-022-00344-7
Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol. 2010;47:930-38. https://doi.org/10.1016/j.fgb.2010.05.001
Castrillo M, García-Martínez J, Avalos J. Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol. 2013;79(8):2777-88. https://doi.org/10.1128/aem.03110-12
Poyedinok NL, Potemkina JV, Buchalo AS, Negrijko AM. Stimulation with low-intensity laser light of basidiospore germination and growth of monocaryotic isolates in Medicinal Mushroom Hericium erinaсeus (Bull.:Fr.) Pers. (Aphyllophoromycetideae). Int J Med Mushrooms. 2000;2(4):339-42. https://doi.org/10.1615/IntJMedMushr.v2.i4.140
Poyedinok NL, Negrijko AM, Bisko N, Mykchaylova O, Potemkina JV. Energy Efficient Systems of Artificial Lighting in Technologies of Edible and Medicinal Mushroom Cultivation. Nauka ta innovacii. 2013;9(3):46-56.
IBK Mushroom Culture Collection [Internet]. Version 1.7. Copenhagen (Denmark): GBIF Norway. c2020 - [Cited 2023 Nov 16]. Available from: https://www.gbif.org/.
Mykchaylova O, Lomberg M, Bisko N. Verification and Screening of Biotechnologically Valuable Macromycetes Species in vitro. In: Development of modern science: the experience of European countries and prospects for Ukraine. Baltija Publishing; 2019. p. 354-75.
Bisko N, Mustafin K, Al-Maali G, Suleimenova Z, Lomberg M, Narmuratova Z, Mykchaylova O, Mytropolska N, Zhakipbekova A. Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes. Czech Mycol. 2020;72(1):1-17. https://doi.org/10.33585/cmy.72101
Corrochano LM. Light in the fungal world: From photoreception to gene transcription and beyond. Ann Rev Genet. 2019;53:149-70. https://doi.org/10.1146/annurev-genet-120417-031415
Yu Z, Fischer R. Light sensing and responses in fungi. Nat Rev Microbiol. 2019;17(1):25-36. https://doi.org/10.1038/s41579-018-0109-x
Idnurm B, Heitman J. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 2005;3(4):e95. https://doi.org/10.1371%2Fjournal.pbio.0030095
Sakamoto K, Jinno K, Sasaki K, Nogami H, Furusawa N, Ogawa T. Analysis on Genes Expressed during Photomorphogenesis of the Fruiting Bodies in Pholiota nameko. Shokubutsu Kankyo Kogaku. 2005;17(1):3-10. https://doi.org/10.2525/shita.17.3
Arjona D, Aragón C, Aguilera JA, Ramírez L, Pisabarro AG. Reproducible and controllable light induction of in vitro fruiting of the white-rot basidiomycete Pleurotus ostreatus. Mycol Res. 2009;113(5):552-58. https://doi.org/10.1016/j.mycres.2008.12.006
Davies GJ, Williams SJ. Carbohydrate-active enzymes: sequences, shapes, contortions and cells. Biochem Soc Trans. 2016;44:79-8. https://doi.org/10.1042/bst20150186
Poyedinok NL, Mykhailova, OB, Shcherba VV, Buchalo AS, Negriyko AM. Light Regulation of Growth and Biosynthetic Activity of Ling Zhi or Reishi of Medicinal Mushroom Ganoderma lucidum (W.Curt.: Fr.) P. Karst. (Aphyllophoro-mycetideae) in Pure Culture. Int J Med Mushr. 2008;10(4):368-78. https://doi.org/10.1615/IntJMedMushr.v10.i4.100
Poyedinok N., Mykchaylova OB, Dudka IA. Effect of Low-Intensity Laser Irradiation on the Cultivated Macromycetes Seed Culture Growth Activity. Microbiol Biotechnol. 2015;(1):77-86.
Huang MY, Lin KH, Lu CC, Chen LR, Hsiung TC, Chang WT. The intensity of blue light-emitting diodes influences the antioxidant properties and sugar content of oyster mushrooms (Lentinus sajor-caju). Scientia Horticulturae. 2017;218:8-13. https://doi.org/10.1016/j.scienta.2017.02.014
Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci. 2007;6(7):725-36. https://doi.org/10.1039/b702155k
Nakano Y, Fujii H, Kojima M. Identification of blue-light photoresponse genes in oyster mushroom mycelia. Biosci. Biotechnol. Biochem. 2010;74(10):2160-5. https://doi.org/10.1271/bbb.100565
Feng Y, Xu H, Sun Y, Xia R, Hou Z, Li YJ, Wang Y, Pan S, Li L, Zhao C, Ren H, Xin G. Effect of light on quality of preharvest and postharvest edible mushrooms and its action mechanism: A review.
Trends Food Sci Technol. 2023;139:104119. https://doi.org/10.1016/j.tifs.2023.104119
Poyedinok NL, Negriyko AM, Mykhailova OB, Potemkina JV, Buchalo AS. Laser light applications in cultivation of some species of edible mushrooms. Biotechnology. 2003;3:66-78.
Yue Z, Zhang W, Liu W, Xu J, Liu W, Zhang X. Effect of Different Light Qualities and Intensities on the Yield and Quality of Facility-Grown Pleurotus eryngii. J Fungi. 2022;8(12):1244. https://doi.org/10.3390/jof8121244
Namba K, Inatomi S, Mori K, Shimosaka M, Okazaki M. Effect of LED lights on fruit-body production in Hypsizygus marmoreus. Mushroom Sei Biotechnol. 2002;10:141-6.
Araújo NL, Avelino KV, Halabura MIW, Marim RA, Kassem ASS, Linde GA, Colauto NB, do Valle JS. Use of green light to improve the production of lignocellulose-decay enzymes by Pleurotus spp. in liquid cultivation. Enzyme Microb Technol. 2021;149:109860. https://doi.org/10.1016/j.enzmictec.2021.109860
Johnson M, Bradforf C. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J Glycomics Lipidomics. 2014;4(4). http://doi.org/0.4172/2153-0637.1000123
Hossain S, Hashimoto M, Choudhury EK, Alam N, Hussain S, Hasan M, Choudhury SK, Mahmud I. Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin Exp Pharmacol Physiol. 2003;30(7):470-5. https://doi.org/10.1046/j.1440-1681.2003.03857.x
Parikh P, McDaniel MC, Ashen MD, Miller JI, Sorrentino M, Chan V, Blumenthal RS, Sperling LS. Diets and cardiovascular disease: an evidence-based assessment. J Am Coll Cardiol. 2005;45(9):1379-87. https://doi.org/10.1016/j.jacc.2004.11.068
Mokochinski JB, López BGC, Sovrani V, Santa HSD, Gonzalez-Borrero PP, Sawaya ACHF, Torres YR. Production of Agaricus brasiliensis mycelium from food industry residues as a source of antioxidants and essential fatty acids. Int J Food Sci Technol. 2015;50(9):2052-8. https://doi.org/10.1111/ijfs.12861
Degwert J, Jacob J, Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies. 1998; US Patent 5708028.
Barroetaveña C, Toledo CV. The nutritional benefits of mushrooms. In: Ferreira ICFR, Morales Gómez P, Barros L, editors. Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications. Chichester, UK: Wiley-Blackwell; 2017. p. 65-82.
Ribeiro B, Pinho PG, Andrade PB, Baptista P, Valentao P. Fatty acid composition of wild edible mushrooms species: A comparative study. Microchem J. 2009;93:29-35. https://doi.org/10.1016/j.microc.2009.04.005
Dubova H, Dotsenko N, Mykchaylova О, Poyedinok N. Study of Aromatic Components in the Course of Initiating Enzymatic Reactions in the Edible Mushroom Pleurotus ostreatus. Food Sci. Technol. 2021;15(4). https://doi.org/10.15673/fst.v15i4.2254
Dubova HYe, Bezusov AT, Biloshytska OK, Poyedinok NL. Application of Aroma Precursors in Food Plant Raw Materials: Biotechnological Aspect. Innov Biosyst Bioeng. 2022;6(3-4):94-109. https://doi.org/10.20535/ibb.2022.6.3-4.267094
Sun H, Chen X, Xiang Y, Hu Q, Zhao L. Fermentation characteristics and flavor properties of H. erinaceus and Tremella fuciformis fermented beverage. Food Biosci. 2022;50:102017. https://doi.org/10.1016/j.fbio.2022.102017
Zhao G, Liu C, Hadiatullah H, Yao Y, Lu F. Effect of Hericium erinaceus on bacterial diversity and volatile flavor changes of soy sauce. LWT. 2020; 139:110543. https://doi.org/10.1016/j.lwt.2020.110543
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Oksana Mykchaylova, Halyna Dubova, Margarita Lomberg, Anatoliy Negriyko, Natalia Poyedinok
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.